Bioproducts pp 131-169 | Cite as

Fluidized bed biofilm reactor for wastewater treatment

  • Wen K. Shieh
  • John D. Keenan
Conference paper
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 33)


The fluidized bed biofilm reactor (FBBR) represents a recent innovation in biofilm processes. Immobilization of microorganisms on the small, fluidized particles of the medium results in a high reactor biomass holdup which enables the process to be operated at significantly higher liquid throughputs with the practical absence of biomass wash-out. The process intensification (i.e., a reduction in process size while maintaining performance) achieved in FBBRs makes this innovative technology particularly attractive in biological wastewater treatment, commercial biomass conversion, and ethanol and biochemical production applications. In this chapter, the present understanding of biofilm phenomena involved in the operation of FBBRs is reviewed. Special emphasis is placed on the microbial and kinetic aspects of FBBRs and practical design considerations and current applications are described.


Biomass Concentration Pressure Swing Adsorption External Mass Transfer Internal Mass Transfer Minimum Fluidization Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Cross-sectional area of the reactor, L2


Discharge coefficient of the orifice or nozzle


Drag coefficient


Diameter of orifice or nozzle opening, inches


Diameter of lateral, inches


Media diameter, L


Bioparticle diameter, L


Diffusivity of substrate in water, L2T−1


Effective diffusivity of substrate in biofilm, L2T−1


Gravitational acceleration, LT−2


Differential head at the orifice or nozzle, ft of liquid


Expanded bed height, L


Estimated expanded bed height, L


Change in expanded bed height, L


Intrinsic zero order rate constant, MM−1T−1


Intrinsic first order rate constant, L3M−1T−1


External mass transfer coefficient, LT−1


Observed zero order rate constant, M0.5L−2.5


Observed first order rate constant, L−1


Expansion index


Effluent TKN, ML−3


Influent TKN, ML−3

\(N_{Re_t }\)

Terminal Reynolds number


Biofilm moisture content


Flow, gpm


Radial distance measured from bioparticle center, L


Recycle ratio


Characteristic radius, L


Substrate penetration depth, L


Media radius, L


Bioparticle radius, L


observed substrate conversion rate per unit biofilm mass, MM−1T−1


observed substrate conversion rate per unit fluidized bed volume, ML−3T−1


intrabiofilm substrate concentration, ML−3


Bulk-liquid substrate concentration, ML−3


Inlet substrate concentration, ML−3


Effluent BOD5, ML−3


Influent BOD5, ML−3


time, T


Superficial upflow velocity, LT−1


Minimum fluidization velocity, LT−1


Bioparticle terminal settling velocity, LT−1


Media volume, L3


Media volume in ΔHB, L3


Bioparticle volume, L3

\(\left. W \right|_{r = r_p }\)

Mass transfer of substrate across liquid-biofilm interface, MT−1


Expansion rate of bed height, m d−1


Biomass concentration in an FBBR, ML−3


Effective biomass concentration in an FBBR, ML−3


Axial position in an FBBR, L



bed porosity


biofilm thickness, L


estimated biofilm thickness, L


biofilm dry density, ML−3


liquid density, ML−3


media density, ML−3


bioparticle density, ML−3


liquid viscosity, MLT−2


hydraulic retention time, T


effectiveness factor


bioparticle zero order effectiveness factor


bioparticle first order effectiveness factor


conventional zero order Thiele modulus


modified zero order Thiele modulus


conventional first order Thiele modulus


modified first order Thiele modulus


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailey, J. E., Ollis, D. F.: Biochemical Engineering Fundamentals, New York, McGraw-Hill 1977Google Scholar
  2. 2.
    Trawinski, H.: Chem. Ing.-Tech. 24, 444 (1952)CrossRefGoogle Scholar
  3. 3.
    Barbara, M., Flood, F., Jeris, J. S.: Clearwaters 6 (1979)Google Scholar
  4. 4.
    Jeris, J. S., Owen, R. W.: J. Water Roll. Control Fed. 49, 816 (1977)Google Scholar
  5. 5.
    Jeris, J. S., Qwen, R. W., Hickey, R. F., Flood, F.: Water Poll. Control Fed. 49, 816 (1977)Google Scholar
  6. 6.
    Cooper, P. F.: The Chemical Engineer 373 (1981)Google Scholar
  7. 7.
    Nutt, S. G., Stephenson, J. P., Pries, J. H.: Aerobic Fluidized Bed Treatment of Municipal Wastewater for Organic Carbon Removal presented at the 52nd Annual Conf. of the Water Pollution Control Federation, Houston, Texas 1979Google Scholar
  8. 8.
    Sutton, P. M., Shieh, W. K., Kos, P., Dunning, P. R.: Dorr-Oliver's Oxitron System Fluidized-Bed Water and Wastewater Treatment Process. In: Biological Fluidized Bed Treatment of Water and Wastewater (eds. Cooper, P. F., Atkinson, B.), p. 285, Chichester, England, Ellis Horwood Limited 1981Google Scholar
  9. 9.
    Mulcahy, L. T., Shieh, W. K., LaMotta, E. J.: Prog. Wat. Tech. 12, 143 (1980)Google Scholar
  10. 10.
    Hancher, C. W., Taylor, P. A., Napier, J. M.: Biotech. Bioeng. Symp. 8, 361 (1978)Google Scholar
  11. 11.
    Gauntlett, R. B.: Removal of Ammonia and Nitrate in the Treatment as of Potable Water. In: Biological Fluidized Bed Treatment of Water and Wastewater (eds. Cooper, P. F., Atkinson, B.), p. 48, Chichester, London, Ellis Horwood Limited 1981Google Scholar
  12. 12.
    Hermanowicz, S. W., Ganczarzyk, J. J.: Biotech. Bioeng. 25, 1321 (1983)CrossRefGoogle Scholar
  13. 13.
    Cooper, P. F., Wheeldon, D. H. V.: Complete Treatment of Sewage in a Two-Fluidized Bed System. In: Biological Fluidized Bed Treatment of Water and Wastewater (eds. Cooper, P. F., Atkinson, B.), p. 121, Chichester, London, Ellis Horwood Limited 1981Google Scholar
  14. 14.
    Jewell, W. J., Switzenbaum, M. S., Morris, J. W.: J. Water Poll. Control Fed. 53, 482 (1981)Google Scholar
  15. 15.
    Switzenbaum, M. S., Jewell, W. J.: ibid. 52, 1963 (1980)Google Scholar
  16. 16.
    Bull, M. A., Sterritt, R. M., Lester, J. N.: J. Chem. Tech. Biotechnol. 33B, 221 (1983)Google Scholar
  17. 17.
    Schraa, G., Jewell, W. J.: J. Water Poll. Control Fed. 56, 3, 226 (1984)Google Scholar
  18. 18.
    Boening, P. H., Larsen, W. F.: Biotech. Bioeng. 24, 2539 (1982)CrossRefGoogle Scholar
  19. 19.
    Hakulinen, R., Salonen, M. S.: Process Biochemistry 18 (1982)Google Scholar
  20. 20.
    LaMotta, E. J., Hickey, R. F., Buydos, J. F.: J. Env. Eng. Div., ASCE, 108, EE6, 1326 (1982)Google Scholar
  21. 21.
    Characklis, W. G.: Water Research 7, 1113 (1973)CrossRefGoogle Scholar
  22. 22.
    Zobell, C. E., Allen, E. C.: J. Bacteriology 29, 239 (1935)Google Scholar
  23. 23.
    Zobell, C. E., Anderson, D. Q.: Biol. Bulletin 71, 324 (1936)Google Scholar
  24. 24.
    Zobell, C. E.: J. Bacteriology 46, 39 (1943)Google Scholar
  25. 25.
    Heukelekian, H., Heller, A.: ibid. 40, 547 (1940)Google Scholar
  26. 26.
    Heukelekian, H., Crosby, E. S.: Sewage Ind. Wasters 28, 1, 73 (1956)Google Scholar
  27. 27.
    Jannasch, H. W., J. Gen. Microbiol. 18, 609 (1958)PubMedGoogle Scholar
  28. 28.
    Bott, T. R., Miller, P. C.: J. Chem. Tech. Biotechnol. 33B, 177 (1983)Google Scholar
  29. 29.
    Bryers, J. D., Characklis, W. G.: Biotech. Bioeng. 24, 2451 (1982)CrossRefGoogle Scholar
  30. 30.
    Sanders, W. M.: Water Research 3, 81 (1967)Google Scholar
  31. 31.
    Kornegay, B. H., Andrews, J. F.: J. Water Poll. Control Fed. 40, R460 (1968)Google Scholar
  32. 32.
    Marshall, K. C.: The Effects of Surfaces on Microbial Activity. In: Water Pollution Microbiology, Vol. 2 (ed. Mitchell, R.), p. 51, John Wiley & Sons, New York 1978Google Scholar
  33. 33.
    Wilkinson, J. F.: Bact. Review 22, 46 (1958)Google Scholar
  34. 34.
    Lamanna, C., Mallette, M. F.: Basic Microbiology, Williams & Wilkins, Baltimore 1965Google Scholar
  35. 35.
    Gaudy, E., Wolfe, R. S.: Appl. Microbiol. 10, 200 (1962)PubMedGoogle Scholar
  36. 36.
    Maier, W. J.: Mass Transfer and Growth Kinetics on a Slime Layer: Simulation of Trickling Filter. Ph. D. Dissertation, Cornell Univ. 1966Google Scholar
  37. 37.
    Mulcahy, L. T., Shieh, W. K., LaMotta, E. J.: Biotech. Bioeng. 23, 2403 (1981)CrossRefGoogle Scholar
  38. 38.
    Atkinson, B., Fowler, H. W.: The Significance of Microbial Film in Fermenters. In: Advances in Biochemical Engineering/Biotechnology (ed. Fiechter, A.), Vol. 3, 221, Heidelberg, Springer 1974Google Scholar
  39. 39.
    Characklis, W. G.: Biotech. Bioeng. 23, 1923 (1981)CrossRefGoogle Scholar
  40. 40.
    Shieh, W. K., Sutton, P. M., Kos, P.: J. Water Poll. Control Fed. 53, 11, 1574 (1981)Google Scholar
  41. 41.
    Grady, C. P. L., Jr.: Modeling of Biological Fixed Films — A State-of-the-Art Review. In: Proceeding of the First International Conference on Fixed-Film Biological Processes (eds. Wu, Y. C., Smith, E. D., Miller, R. D., Patken, E. J. O.), Vol. 1, 344, Univ. of Pittsburgh, Pittsburgh, Pa. 1982Google Scholar
  42. 42.
    Hoehn, R. C., Ray, A. D.: J. Water Poll. Control Fed. 45, 2302 (1973)Google Scholar
  43. 43.
    Mulcahy, L. T., LaMotta, E. J.: Mathematical Model of the Fluidized Bed Biofilm Reactor, Report No. Env. E. 59-78-2, Department of Civil Engineering, Univ. of Massachusetts/Amherst 1978Google Scholar
  44. 44.
    Tomlinson, T. G., Snadden, D. H. M.: Air & Water Poll./Int. Journ. 10, 865 (1966)Google Scholar
  45. 45.
    Heukelekian, H., Crosby, E. S.: Sewage Ind. Wastes 28, 2, 206 (1956)Google Scholar
  46. 46.
    Metcalf & Eddy, Inc.: Wastewater Engineering: Treatment/Disposal/Reuse, 2nd Edition, New York, McGraw-Hill 1979Google Scholar
  47. 47.
    Paolini, A. E., Sebastianti, E., Variali, G.: Water Research 13, 751 (1979)CrossRefGoogle Scholar
  48. 48.
    Williamson, K. J., McCarty, P. L.: J. Water Poll. Control Fed. 48, 28 (1976)Google Scholar
  49. 49.
    Bungay, H. R. IV, Whalen, W. J., Sanders, W. M.: Biotech. Bioeng. 11, 765 (1969)CrossRefGoogle Scholar
  50. 50.
    Chen, Y. S., Bungay, H. R. IV: ibid. 23, 781 (1981)CrossRefGoogle Scholar
  51. 51.
    LaMotta, E. J.: Evaluation of Diffusional Resistances in Substrate Utilization by Biological Films. Ph. D. Dissertation, University of North Carolina at Chapel Hill 1976Google Scholar
  52. 52.
    Atkinson, B., Daoud, I. S., Williams, D. A.: Trans. Instn. Chem. Engrs. 46, T245 (1968)Google Scholar
  53. 53.
    Atkinson, B., How, S. Y.: ibid. 52, 260 (1974)Google Scholar
  54. 54.
    Alleman, J. E., Veil, J. A., Canaday, J. T.: Water Research 16, 543 (1982)CrossRefGoogle Scholar
  55. 55.
    Friedman, B. A., Dugan, P. R.: J. Bacteriology 95, 1903 (1968)Google Scholar
  56. 56.
    Heukelekian, H.: Sewage Ind. Wastes 28, 78 (1956)Google Scholar
  57. 57.
    Jeris, J. S., Beer, C., Mueller, J. A.: J. Water Poll Control Fed. 47, 2043 (1975)Google Scholar
  58. 58.
    Atkinson, B., Swilley, E. L.: Water Research 1, 687 (1967)CrossRefGoogle Scholar
  59. 59.
    Shieh, W. K., Mulcahy, L. T., LaMotta, E. J.: Trans. Instn. Chem. Engr. 59, 129 (1981)Google Scholar
  60. 60.
    Aris R.: Elementary Chemical Reactor Analysis. Englewood Cliffs, N. J., Prentice-Hall 1969Google Scholar
  61. 61.
    Webb, C., Black, G. M., Atkinson, B.: Chem. Eng. Res. Des. 61, 125 (1983)Google Scholar
  62. 62.
    Shieh, W. K., Chen, C. Y.: ibid. 62, 133 (1984)Google Scholar
  63. 63.
    Richardson, J. F., Zaki, W. N.: Trans. Instn. Chem. Engr. 32, 35 (1954)Google Scholar
  64. 64.
    Lewis, E. W., Bowerman, E. W.: Chem. Eng. Prog. 48, 605 (1952)Google Scholar
  65. 65.
    Wen, C. Y., Yu, Y. H.: Chem. Eng. Prog. Symp. Series 62, 100 (1962)Google Scholar
  66. 66.
    Vasalos, I. A., Rundell, D. N., Megiris, K. E., Tjatjopoulos, G. T.: AIChE J. 28, 2, 346 (1982)CrossRefGoogle Scholar
  67. 67.
    Harremoes, P.: Vatten 33, 122 (1977)Google Scholar
  68. 68.
    Kobayashi, T., Laidler, K. J.: Biochemica et Biophysica Acta 302 (1973)Google Scholar
  69. 69.
    Mulcahy, L. T., Shieh, W. K., LaMotta, E. J.: Water-1980 AIChE Symp. Ser., 209, 77, 273 (1981)Google Scholar
  70. 70.
    Cooper, P. F., Wheeldon, D. H. V., Ingram-Tedd, P. E., Harrington, D. W.: Sand/Biomass Separation with Production of a Concentrated Sludge. In: Biological Fluidized Bed Treatment of Water and Wastewater (eds. Cooper, P. F., Atkinson, B.), p. 361, Chichester, London, Ellis Horwood Limited 1981Google Scholar
  71. 71.
    Li, A.: Personal Communication (1984)Google Scholar
  72. 72.
    Simon-Hartley, Ltd.: Technical Bulletin (1984)Google Scholar
  73. 73.
    Oppelt, E. T., Smith, J. M.: United States Environmental Protection Agency Research and Current Thinking on Fluidized-Bed Biological Treatment. In: Biological Fluidized Bed Treatment of Water and Wastewater (eds. Cooper, P. F., Atkinson, B.), p. 165, Chichester, London, Ellis Horwood Limited 1980Google Scholar
  74. 74.
    Richard, Y., Leprince, A., Martin, G., LeBlanc, C.: Prog. Wat. Tech. 12, 173 (1980)Google Scholar
  75. 75.
    Cooper, P. F., Wheeldon, D. H. V.: Wat. Poll. Control 286 (1980)Google Scholar
  76. 76.
    Switzerbaum, M. S.: Enzyme Microb. Technol. 243 (1983)Google Scholar
  77. 77.
    Nutt, S. G., Melcer, H., Pries, J. H.: J. Water Poll. Control Fed. 56, 7, 851 (1984)Google Scholar
  78. 78.
    Frostell, B.: Process Biochemistry 37 (1982)Google Scholar
  79. 79.
    Hickey, R. F., Owens, R. W.: Biotech. Bioeng. Symp. 11, 399 (1981)Google Scholar
  80. 80.
    Sutton, P. M., Li, A., Evans, R. R., Korchin, S.: Dorr-Oliver's Fixed Film and Suspended Growth Anaerobic Systems For Industrial Wastewater Treatment and Energy Recover. Presented at the 37th Annual Purdue Industrial Waste conf., West Lafayette, Indiana 1982Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Wen K. Shieh
    • 1
  • John D. Keenan
    • 1
  1. 1.Department of Civil EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations