Skip to main content

Fluidized bed biofilm reactor for wastewater treatment

  • Conference paper
  • First Online:
Bioproducts

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 33))

Abstract

The fluidized bed biofilm reactor (FBBR) represents a recent innovation in biofilm processes. Immobilization of microorganisms on the small, fluidized particles of the medium results in a high reactor biomass holdup which enables the process to be operated at significantly higher liquid throughputs with the practical absence of biomass wash-out. The process intensification (i.e., a reduction in process size while maintaining performance) achieved in FBBRs makes this innovative technology particularly attractive in biological wastewater treatment, commercial biomass conversion, and ethanol and biochemical production applications. In this chapter, the present understanding of biofilm phenomena involved in the operation of FBBRs is reviewed. Special emphasis is placed on the microbial and kinetic aspects of FBBRs and practical design considerations and current applications are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

Cross-sectional area of the reactor, L2

C:

Discharge coefficient of the orifice or nozzle

CD :

Drag coefficient

d1 :

Diameter of orifice or nozzle opening, inches

d2 :

Diameter of lateral, inches

dm :

Media diameter, L

dp :

Bioparticle diameter, L

D:

Diffusivity of substrate in water, L2T−1

De :

Effective diffusivity of substrate in biofilm, L2T−1

g:

Gravitational acceleration, LT−2

h:

Differential head at the orifice or nozzle, ft of liquid

HB :

Expanded bed height, L

ĤB :

Estimated expanded bed height, L

ΔHB :

Change in expanded bed height, L

k0 :

Intrinsic zero order rate constant, MM−1T−1

k1 :

Intrinsic first order rate constant, L3M−1T−1

kc :

External mass transfer coefficient, LT−1

K0 :

Observed zero order rate constant, M0.5L−2.5

K1 :

Observed first order rate constant, L−1

n:

Expansion index

Ne :

Effluent TKN, ML−3

N0 :

Influent TKN, ML−3

\(N_{Re_t }\) :

Terminal Reynolds number

P:

Biofilm moisture content

Q:

Flow, gpm

r:

Radial distance measured from bioparticle center, L

r′:

Recycle ratio

¯r:

Characteristic radius, L

rc :

Substrate penetration depth, L

rm :

Media radius, L

rp :

Bioparticle radius, L

R:

observed substrate conversion rate per unit biofilm mass, MM−1T−1

Rv :

observed substrate conversion rate per unit fluidized bed volume, ML−3T−1

S:

intrabiofilm substrate concentration, ML−3

Sb :

Bulk-liquid substrate concentration, ML−3

Sbi :

Inlet substrate concentration, ML−3

Se :

Effluent BOD5, ML−3

S0 :

Influent BOD5, ML−3

t:

time, T

U:

Superficial upflow velocity, LT−1

Umf :

Minimum fluidization velocity, LT−1

Ut :

Bioparticle terminal settling velocity, LT−1

Vm :

Media volume, L3

ΔVm :

Media volume in ΔHB, L3

Vs :

Bioparticle volume, L3

\(\left. W \right|_{r = r_p }\) :

Mass transfer of substrate across liquid-biofilm interface, MT−1

x:

Expansion rate of bed height, m d−1

X:

Biomass concentration in an FBBR, ML−3

Xa :

Effective biomass concentration in an FBBR, ML−3

Z:

Axial position in an FBBR, L

∂:

(ϱ1/De)0.5

É›:

bed porosity

δ:

biofilm thickness, L

δ:

estimated biofilm thickness, L

ϱ:

biofilm dry density, ML−3

ϱl :

liquid density, ML−3

ϱm :

media density, ML−3

ϱs :

bioparticle density, ML−3

μ:

liquid viscosity, MLT−2

θ:

hydraulic retention time, T

η:

effectiveness factor

η0 :

bioparticle zero order effectiveness factor

η1 :

bioparticle first order effectiveness factor

Φ0 :

conventional zero order Thiele modulus

Φ0m :

modified zero order Thiele modulus

Φ1 :

conventional first order Thiele modulus

Φ1m :

modified first order Thiele modulus

References

  1. Bailey, J. E., Ollis, D. F.: Biochemical Engineering Fundamentals, New York, McGraw-Hill 1977

    Google Scholar 

  2. Trawinski, H.: Chem. Ing.-Tech. 24, 444 (1952)

    Article  Google Scholar 

  3. Barbara, M., Flood, F., Jeris, J. S.: Clearwaters 6 (1979)

    Google Scholar 

  4. Jeris, J. S., Owen, R. W.: J. Water Roll. Control Fed. 49, 816 (1977)

    Google Scholar 

  5. Jeris, J. S., Qwen, R. W., Hickey, R. F., Flood, F.: Water Poll. Control Fed. 49, 816 (1977)

    Google Scholar 

  6. Cooper, P. F.: The Chemical Engineer 373 (1981)

    Google Scholar 

  7. Nutt, S. G., Stephenson, J. P., Pries, J. H.: Aerobic Fluidized Bed Treatment of Municipal Wastewater for Organic Carbon Removal presented at the 52nd Annual Conf. of the Water Pollution Control Federation, Houston, Texas 1979

    Google Scholar 

  8. Sutton, P. M., Shieh, W. K., Kos, P., Dunning, P. R.: Dorr-Oliver's Oxitron Systemâ„¢ Fluidized-Bed Water and Wastewater Treatment Process. In: Biological Fluidized Bed Treatment of Water and Wastewater (eds. Cooper, P. F., Atkinson, B.), p. 285, Chichester, England, Ellis Horwood Limited 1981

    Google Scholar 

  9. Mulcahy, L. T., Shieh, W. K., LaMotta, E. J.: Prog. Wat. Tech. 12, 143 (1980)

    Google Scholar 

  10. Hancher, C. W., Taylor, P. A., Napier, J. M.: Biotech. Bioeng. Symp. 8, 361 (1978)

    Google Scholar 

  11. Gauntlett, R. B.: Removal of Ammonia and Nitrate in the Treatment as of Potable Water. In: Biological Fluidized Bed Treatment of Water and Wastewater (eds. Cooper, P. F., Atkinson, B.), p. 48, Chichester, London, Ellis Horwood Limited 1981

    Google Scholar 

  12. Hermanowicz, S. W., Ganczarzyk, J. J.: Biotech. Bioeng. 25, 1321 (1983)

    Article  Google Scholar 

  13. Cooper, P. F., Wheeldon, D. H. V.: Complete Treatment of Sewage in a Two-Fluidized Bed System. In: Biological Fluidized Bed Treatment of Water and Wastewater (eds. Cooper, P. F., Atkinson, B.), p. 121, Chichester, London, Ellis Horwood Limited 1981

    Google Scholar 

  14. Jewell, W. J., Switzenbaum, M. S., Morris, J. W.: J. Water Poll. Control Fed. 53, 482 (1981)

    Google Scholar 

  15. Switzenbaum, M. S., Jewell, W. J.: ibid. 52, 1963 (1980)

    Google Scholar 

  16. Bull, M. A., Sterritt, R. M., Lester, J. N.: J. Chem. Tech. Biotechnol. 33B, 221 (1983)

    Google Scholar 

  17. Schraa, G., Jewell, W. J.: J. Water Poll. Control Fed. 56, 3, 226 (1984)

    Google Scholar 

  18. Boening, P. H., Larsen, W. F.: Biotech. Bioeng. 24, 2539 (1982)

    Article  Google Scholar 

  19. Hakulinen, R., Salonen, M. S.: Process Biochemistry 18 (1982)

    Google Scholar 

  20. LaMotta, E. J., Hickey, R. F., Buydos, J. F.: J. Env. Eng. Div., ASCE, 108, EE6, 1326 (1982)

    Google Scholar 

  21. Characklis, W. G.: Water Research 7, 1113 (1973)

    Article  Google Scholar 

  22. Zobell, C. E., Allen, E. C.: J. Bacteriology 29, 239 (1935)

    Google Scholar 

  23. Zobell, C. E., Anderson, D. Q.: Biol. Bulletin 71, 324 (1936)

    Google Scholar 

  24. Zobell, C. E.: J. Bacteriology 46, 39 (1943)

    Google Scholar 

  25. Heukelekian, H., Heller, A.: ibid. 40, 547 (1940)

    Google Scholar 

  26. Heukelekian, H., Crosby, E. S.: Sewage Ind. Wasters 28, 1, 73 (1956)

    Google Scholar 

  27. Jannasch, H. W., J. Gen. Microbiol. 18, 609 (1958)

    PubMed  Google Scholar 

  28. Bott, T. R., Miller, P. C.: J. Chem. Tech. Biotechnol. 33B, 177 (1983)

    Google Scholar 

  29. Bryers, J. D., Characklis, W. G.: Biotech. Bioeng. 24, 2451 (1982)

    Article  Google Scholar 

  30. Sanders, W. M.: Water Research 3, 81 (1967)

    Google Scholar 

  31. Kornegay, B. H., Andrews, J. F.: J. Water Poll. Control Fed. 40, R460 (1968)

    Google Scholar 

  32. Marshall, K. C.: The Effects of Surfaces on Microbial Activity. In: Water Pollution Microbiology, Vol. 2 (ed. Mitchell, R.), p. 51, John Wiley & Sons, New York 1978

    Google Scholar 

  33. Wilkinson, J. F.: Bact. Review 22, 46 (1958)

    Google Scholar 

  34. Lamanna, C., Mallette, M. F.: Basic Microbiology, Williams & Wilkins, Baltimore 1965

    Google Scholar 

  35. Gaudy, E., Wolfe, R. S.: Appl. Microbiol. 10, 200 (1962)

    PubMed  Google Scholar 

  36. Maier, W. J.: Mass Transfer and Growth Kinetics on a Slime Layer: Simulation of Trickling Filter. Ph. D. Dissertation, Cornell Univ. 1966

    Google Scholar 

  37. Mulcahy, L. T., Shieh, W. K., LaMotta, E. J.: Biotech. Bioeng. 23, 2403 (1981)

    Article  Google Scholar 

  38. Atkinson, B., Fowler, H. W.: The Significance of Microbial Film in Fermenters. In: Advances in Biochemical Engineering/Biotechnology (ed. Fiechter, A.), Vol. 3, 221, Heidelberg, Springer 1974

    Google Scholar 

  39. Characklis, W. G.: Biotech. Bioeng. 23, 1923 (1981)

    Article  Google Scholar 

  40. Shieh, W. K., Sutton, P. M., Kos, P.: J. Water Poll. Control Fed. 53, 11, 1574 (1981)

    Google Scholar 

  41. Grady, C. P. L., Jr.: Modeling of Biological Fixed Films — A State-of-the-Art Review. In: Proceeding of the First International Conference on Fixed-Film Biological Processes (eds. Wu, Y. C., Smith, E. D., Miller, R. D., Patken, E. J. O.), Vol. 1, 344, Univ. of Pittsburgh, Pittsburgh, Pa. 1982

    Google Scholar 

  42. Hoehn, R. C., Ray, A. D.: J. Water Poll. Control Fed. 45, 2302 (1973)

    Google Scholar 

  43. Mulcahy, L. T., LaMotta, E. J.: Mathematical Model of the Fluidized Bed Biofilm Reactor, Report No. Env. E. 59-78-2, Department of Civil Engineering, Univ. of Massachusetts/Amherst 1978

    Google Scholar 

  44. Tomlinson, T. G., Snadden, D. H. M.: Air & Water Poll./Int. Journ. 10, 865 (1966)

    Google Scholar 

  45. Heukelekian, H., Crosby, E. S.: Sewage Ind. Wastes 28, 2, 206 (1956)

    Google Scholar 

  46. Metcalf & Eddy, Inc.: Wastewater Engineering: Treatment/Disposal/Reuse, 2nd Edition, New York, McGraw-Hill 1979

    Google Scholar 

  47. Paolini, A. E., Sebastianti, E., Variali, G.: Water Research 13, 751 (1979)

    Article  Google Scholar 

  48. Williamson, K. J., McCarty, P. L.: J. Water Poll. Control Fed. 48, 28 (1976)

    Google Scholar 

  49. Bungay, H. R. IV, Whalen, W. J., Sanders, W. M.: Biotech. Bioeng. 11, 765 (1969)

    Article  Google Scholar 

  50. Chen, Y. S., Bungay, H. R. IV: ibid. 23, 781 (1981)

    Article  Google Scholar 

  51. LaMotta, E. J.: Evaluation of Diffusional Resistances in Substrate Utilization by Biological Films. Ph. D. Dissertation, University of North Carolina at Chapel Hill 1976

    Google Scholar 

  52. Atkinson, B., Daoud, I. S., Williams, D. A.: Trans. Instn. Chem. Engrs. 46, T245 (1968)

    Google Scholar 

  53. Atkinson, B., How, S. Y.: ibid. 52, 260 (1974)

    Google Scholar 

  54. Alleman, J. E., Veil, J. A., Canaday, J. T.: Water Research 16, 543 (1982)

    Article  Google Scholar 

  55. Friedman, B. A., Dugan, P. R.: J. Bacteriology 95, 1903 (1968)

    Google Scholar 

  56. Heukelekian, H.: Sewage Ind. Wastes 28, 78 (1956)

    Google Scholar 

  57. Jeris, J. S., Beer, C., Mueller, J. A.: J. Water Poll Control Fed. 47, 2043 (1975)

    Google Scholar 

  58. Atkinson, B., Swilley, E. L.: Water Research 1, 687 (1967)

    Article  Google Scholar 

  59. Shieh, W. K., Mulcahy, L. T., LaMotta, E. J.: Trans. Instn. Chem. Engr. 59, 129 (1981)

    Google Scholar 

  60. Aris R.: Elementary Chemical Reactor Analysis. Englewood Cliffs, N. J., Prentice-Hall 1969

    Google Scholar 

  61. Webb, C., Black, G. M., Atkinson, B.: Chem. Eng. Res. Des. 61, 125 (1983)

    Google Scholar 

  62. Shieh, W. K., Chen, C. Y.: ibid. 62, 133 (1984)

    Google Scholar 

  63. Richardson, J. F., Zaki, W. N.: Trans. Instn. Chem. Engr. 32, 35 (1954)

    Google Scholar 

  64. Lewis, E. W., Bowerman, E. W.: Chem. Eng. Prog. 48, 605 (1952)

    Google Scholar 

  65. Wen, C. Y., Yu, Y. H.: Chem. Eng. Prog. Symp. Series 62, 100 (1962)

    Google Scholar 

  66. Vasalos, I. A., Rundell, D. N., Megiris, K. E., Tjatjopoulos, G. T.: AIChE J. 28, 2, 346 (1982)

    Article  Google Scholar 

  67. Harremoes, P.: Vatten 33, 122 (1977)

    Google Scholar 

  68. Kobayashi, T., Laidler, K. J.: Biochemica et Biophysica Acta 302 (1973)

    Google Scholar 

  69. Mulcahy, L. T., Shieh, W. K., LaMotta, E. J.: Water-1980 AIChE Symp. Ser., 209, 77, 273 (1981)

    Google Scholar 

  70. Cooper, P. F., Wheeldon, D. H. V., Ingram-Tedd, P. E., Harrington, D. W.: Sand/Biomass Separation with Production of a Concentrated Sludge. In: Biological Fluidized Bed Treatment of Water and Wastewater (eds. Cooper, P. F., Atkinson, B.), p. 361, Chichester, London, Ellis Horwood Limited 1981

    Google Scholar 

  71. Li, A.: Personal Communication (1984)

    Google Scholar 

  72. Simon-Hartley, Ltd.: Technical Bulletin (1984)

    Google Scholar 

  73. Oppelt, E. T., Smith, J. M.: United States Environmental Protection Agency Research and Current Thinking on Fluidized-Bed Biological Treatment. In: Biological Fluidized Bed Treatment of Water and Wastewater (eds. Cooper, P. F., Atkinson, B.), p. 165, Chichester, London, Ellis Horwood Limited 1980

    Google Scholar 

  74. Richard, Y., Leprince, A., Martin, G., LeBlanc, C.: Prog. Wat. Tech. 12, 173 (1980)

    Google Scholar 

  75. Cooper, P. F., Wheeldon, D. H. V.: Wat. Poll. Control 286 (1980)

    Google Scholar 

  76. Switzerbaum, M. S.: Enzyme Microb. Technol. 243 (1983)

    Google Scholar 

  77. Nutt, S. G., Melcer, H., Pries, J. H.: J. Water Poll. Control Fed. 56, 7, 851 (1984)

    Google Scholar 

  78. Frostell, B.: Process Biochemistry 37 (1982)

    Google Scholar 

  79. Hickey, R. F., Owens, R. W.: Biotech. Bioeng. Symp. 11, 399 (1981)

    Google Scholar 

  80. Sutton, P. M., Li, A., Evans, R. R., Korchin, S.: Dorr-Oliver's Fixed Film and Suspended Growth Anaerobic Systems For Industrial Wastewater Treatment and Energy Recover. Presented at the 37th Annual Purdue Industrial Waste conf., West Lafayette, Indiana 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Shieh, W.K., Keenan, J.D. (1986). Fluidized bed biofilm reactor for wastewater treatment. In: Bioproducts. Advances in Biochemical Engineering/Biotechnology, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0002455

Download citation

  • DOI: https://doi.org/10.1007/BFb0002455

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16380-0

  • Online ISBN: 978-3-540-39771-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics