Skip to main content

Ultrafiltration for the separation of biocatalysts

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE,volume 26)

Abstract

The application of ultrafiltration in biotechnology is reviewed emphasizing the separation of catalytically active species. Ultrafiltration as a separation process as well as its application to membrane reactors is analyzed. On the basis of an application-oriented theory of ultrafiltration, the essential aspects for process design are described. A survey of applications is given.

Ultrafiltration has proved to be a very versatile separation process for biocatalysts owing to the possibility of independently adjusting the temperature, the avoidance of phase transition and the low energy requirement. It will be shown that ultrafiltration devices, suitable for the isolation of biocatalysts, can also be applied efficiently for their re-use in catalytic processes. The main advantages of employing biocatalysts in ultrafiltration membrane reactors are that continuous operation is possible in homogeneous phase and that immobilization know-how is not required.

Future trends can be predicted with respect to the development of sterilisable membranes with improved narrow pore size distribution and with surfaces that will not affect fragile biocatalysts. Continuous coenzyme regeneration in membrane reactors and biomass recycling in continuous fermentation processes, in order to uncouple the retention time of the catalyst from the hydraulic retention time will result in increased application.

Keywords

  • Concentration Polarization
  • Membrane Reactor
  • Continuous Stir Tank Reactor
  • Ultrafiltration Membrane
  • Transmembrane Pressure

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0001861
  • Chapter length: 70 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-39537-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a m2 m−3 :

volume specific area

A m2 :

area

c mol m−3 :

concentration

D m2 s−1 :

diffusion coefficient

d m:

diameter

E kg m−3 :

enzyme concentration

Ea J mol−1 :

energy of activation

f:

ratio

J m s−1 :

flux (area specific volumetric flow rate)

Ji mol m−2 s−1 :

molar flux of substance i

k2 mol kg−1 s−1 :

reaction rate constant

kd m s−1 :

mass-transfer coefficient

kde s−1 :

deactivation rate constant

Kic mol m−3 :

constant for competitive product inhibition

Km mol m−3 :

Michaelis-Menten constant

l m:

length

m kg:

mass

M kg kmol−1 :

molar mass

n:

number of stage(s)

p Pa=N m−2 :

pressure

r m:

radius

rm mol kg−1 s−1 :

catalyst mass specific reaction rate

¯rm mol kg−1 s−1 :

catalyst mass specific productivity

rv mol m−3 s−1 :

reactor volume specific reaction rate

R:

apparent retention

Rm :

intrinsic retention

S mol m−3 :

substrate concentration

t s:

time

¯t s:

mean residence time

u m s−1 :

linear velocity

V m3 :

volume

V m3 s−1 :

volumetric flow rate

W Pa s m−1 :

hydraulic resistance

X:

substrate conversion

x m:

local coordinate

γ s−1 :

shear rate (absolute value)

δ m:

laminar boundary layer thickness

ε:

porosity

η Pa s:

dynamic viscosity

ν m2 s−1 :

kinematic viscosity

π Pa:

osmotic pressure

ϱ kg m−3 :

density

σ 2p m2 :

variance of pore diameter

σ 2i m2 :

variance of particle diameter

τ Pa:

shear stress

τm kg s m−3 :

catalyst mass referred space time

θ:

dimensionless time (t/¯t)

b:

bulk phase

c:

convective

d:

diffusive — (excl. kd)

e:

end-, final

E:

enzyme

f:

filtrate

g:

gel

h:

hydraulic

i:

referred to species i

m:

membrane- (excl. τm rm, Km)

n:

referred to stage n, number of stages

o:

initial-, feed

p:

pore

P:

productivity referred

r:

radial

R:

reactor

s:

saturation

S:

separation unit

t:

tube

V:

volume

w:

water (eluant)

max:

maximum

opt:

optimum

rec:

recycle

Σ:

total

ADH:

alcohol dehydrogenase

A(D)TP:

adenosine (di)triphosphate

AlaDH:

alanine dehydrogenase

CMR:

cascade of completely equipped UFMR

CRMR:

cascade recycle membrane reactor

CSTR:

continuous stirred tank reactor (ideal)

FDH:

formate dehydrogenase

LDH:

lactate dehydrogenase

LeuDH:

leucine dehydrogenase

MR:

membrane reactor (general)

PEG:

polyethylene glycol

PFTR:

plug flow tubular reactor

PVA:

polyvinyl alcohol

PWTR:

porous wall tubular reactor

SBR:

stirred batch reactor

TRMR:

tubular recycle membrane reactor

UFMR:

continuously operated single stage ultrafiltration membrane reactorx

References

  1. Michaels, A. S., in: Polymer Science and Technology, Vol. 13, Ultrafiltration Membranes and Applications, (Cooper, A. R. ed.), p. 1, Plenum Press, New York 1980

    Google Scholar 

  2. Sourirajan, S., Loeb, S.: Advan. Chem. Ser. 38, 117 (1962)

    Google Scholar 

  3. Michaels, A. S.: CHEMTECH, p. 36 Jan. 1981

    Google Scholar 

  4. Madsen, R. F.: Hyperfiltration and Ultrafiltration in Plate-and-Frame Systems, Elsevier Publ. Co., 1977

    Google Scholar 

  5. Strathmann, H.: Chem. Tech. 7 (8), 333 (1978)

    Google Scholar 

  6. Porter, M. C.: Ind. Eng. Chem. Prod. Res. Develop. 11 (3), 234 (1972)

    Google Scholar 

  7. Rauch, K.: Doctoral thesis, TH Aachen, W.-Germany 1978

    Google Scholar 

  8. Blatt, W. F., Feinberg, M. P., Hopfenberg, H. B.: Science 160, 224 (1965)

    Google Scholar 

  9. Michaels, A. S., in: Progress in Separation and Purification, Vol. 1, p. 297, Wiley & Sons, 1968

    Google Scholar 

  10. Blatt, W. F., Hudson, B. G., Robinson, S. M., Zipilivan, E. M.: Anal. Biochem. 22, 161 (1968)

    Google Scholar 

  11. BMFT-Mitteilungen 4, p. 60, Bonn: Bundesministerium für Forschung und Technologie 1982

    Google Scholar 

  12. Graetz, L.: Ann. Physik. 25, 337 (1885)

    Google Scholar 

  13. Lévêque, J.: Ann. Mines, 14, 201, 305, 381 (1928)

    Google Scholar 

  14. Gröber, H., Erk, S., Grigull, V.: Fundamentals of Heat Transfer, p. 233, McGraw-Hill, New York 1961

    Google Scholar 

  15. Dittus, F. W., Boelter, L. M.: Univ. Calif., Berkeley, Publ. Eng. 2, 443 (1930)

    Google Scholar 

  16. Harriott, P., Hamilton, R. M.: Chem. Eng. Sci. 20, 1073 (1965)

    Google Scholar 

  17. Blatt, W. F., Dravid, A., Michaels, A. S., Nelson, L., in: Membrane Science and Technology, (Flinn, J. E. ed.), p. 47, Plenum Press, New York-London 1970

    Google Scholar 

  18. Pitera, E. W., Middleman, S.: Ind. Eng. Chem., Process Des. Develop. 12 (1), 52 (1973)

    Google Scholar 

  19. Copas, A. L., Middlemann, S.: ibid. 14 (2), 143 (1974)

    Google Scholar 

  20. Shen, J. J. S., Probstein, R. F.: ibid. 18 (3), 547 (1979)

    Google Scholar 

  21. Probstein, R. F., Shen, J. S., Leung, W. F.: Desalination 24, 1 (1978)

    Google Scholar 

  22. Van der Waal, M. J., Van der Velden, P. M., Koning, J., Smolders, C. A., van Swaay, W. P. M.: Desalination 22, 465 (1977)

    Google Scholar 

  23. Bixler, H. J., Rappe, G. C.: US 3,541,006, Nov. 17, 1970

    Google Scholar 

  24. Ebner, H., Enenkel, A.: US 3,974,068, Aug. 10, 1976

    Google Scholar 

  25. Ebner, H.: Chem.-Ing.-Tech. 53, 25 (1981)

    Google Scholar 

  26. Brown, C. E., Tulin, M. P., Van Dyke, P.: Chem. Eng. Progr., Symp. Series, Vol. 67 (114), p. 174, 1971

    Google Scholar 

  27. Holtz, H. W.: Doctoral thesis, TH Aachen, W.-Germany 1979

    Google Scholar 

  28. Rautenbach, R., Holtz, H.: Chem.-Ing.-Tech. 51 (12), 1241 (1979)

    Google Scholar 

  29. Leung, W.-F., Probstein, R. F.: Ind. Eng. Chem. Fund. 18 (3), 274 (1979)

    Google Scholar 

  30. Goldsmith, R. L., de Filippi, R. P., Hossain, S., Timmins, R. S., in: Membrane Processes in Industry and Biomedicine, (Bier, M. ed.), p. 267, Plenum Press, New York-London 1971

    Google Scholar 

  31. Yan, S. H., Hill, C. G., Amundson, C. H.: J. Dairy Sci. 62 (1), 23 (1979)

    Google Scholar 

  32. Baker, R. W., Strathmann, H.: J. Appl. Polymer Sci. 14, 1197 (1970)

    Google Scholar 

  33. Breslau, B. R., Kilcullen, B. M.: Enzyme Eng. 3, 179 (1975)

    Google Scholar 

  34. Flaschel, E., Wandrey, C., in: Characterization of Immobilized Biocatalysts, DECHEMA Monogr., Vol. 84, p. 337, Verlag Chemie, Weinheim 1979

    Google Scholar 

  35. Lonsdale, H. K., in: Industrical Processing with Membranes, (Lacey, R. E., Loeb, S. eds.), chapter VIII, p. 123, Wiley Interscience, New York 1972

    Google Scholar 

  36. de Filippi, R. P.: Chem. Proc. Eng. N.Y. 10, 475 (1977)

    Google Scholar 

  37. Flaschel, E.: Enzyme Eng. 6, 57 (1980)

    Google Scholar 

  38. Timmins, R. S., in: Freeze Drying and Advanced Food Techn., (Goldblith, S. A., Rey, L., Rothmayr, W. W. eds.), chapter 31, p. 503, Academic Press, London 1975

    Google Scholar 

  39. Michaels, A. S.: Sep. Sci. Technol. 15 (6), 1305 (1980)

    Google Scholar 

  40. Jandel, L., Schulte, B., Bückmann, A. F., Wandrey, C.: J. Membrane Sci. 7, 185 (1980)

    Google Scholar 

  41. Butterworth, T. A., Wang, D. I. C.: Ferment. Technol. Today, Proc. IV IFS, p. 195, 1972

    Google Scholar 

  42. Blatt, W. F.: J. Agr. Food Chem. 19 (4), 589 (1971)

    Google Scholar 

  43. Hatch, R. T., Price, J. D.: AIChE Symp. Ser. 74, No. 172, 226 (1978)

    Google Scholar 

  44. Tutunjian, R. S., Reti, A. R.: AIChE. Symp. Ser. 74, No. 178, 210 (1978)

    Google Scholar 

  45. Melling, J.: Process Biochem., p. 7, Sept. 1974

    Google Scholar 

  46. Wandrey, C., Flaschel, E., Schügerl, K.: Ger. Chem. Eng. 1, 39 (1978)

    Google Scholar 

  47. Charm, S. E., Wong, B. L.: Biotech. Bioeng. 12, 1103 (1970)

    Google Scholar 

  48. Charm, S. E., Wong, B. L.: Biorheology 12, 275 (1975)

    Google Scholar 

  49. Tirrell, M., Middleman, S.: Biotechnol. Bioeng. 17, 299 (1975)

    Google Scholar 

  50. Reese, E. T., Ryu, D. Y.: Enzyme Microb. Technol. 2, 239 (1980)

    Google Scholar 

  51. Charm, S. E., Wong, B. L.: Science 170, 466 (1970)

    Google Scholar 

  52. Charm, S. E., Wong, B. L.: Biotech. Bioeng. 20, 451 (1978)

    Google Scholar 

  53. Charm, S. E., Matteo, C. C.: Meth. Enzymol. 22, 476 (1971)

    Google Scholar 

  54. Charm, S. E., Lai, C. J.: Biotech. Bioeng. 13, 185 (1971)

    Google Scholar 

  55. Virkar, P. D., Narendranathan, T. J., Hoare, M., Dunnill, P.: ibid. 23, 425 (1981)

    Google Scholar 

  56. Tirrell, M., Middleman, S.: ibid. 20, 605 (1978)

    Google Scholar 

  57. Tirrell, M., Middleman, S.: Biophys. J. 23, 121 (1978)

    Google Scholar 

  58. Tirrell, M.: J. Bioeng. 2, 183–193 (1978)

    Google Scholar 

  59. Charm, S. E., Wong, B. L.: Enzyme Microb. Technol. 3, 111 (April 1980)

    Google Scholar 

  60. Thomas, C. R., Dunnill, P.: Biotech. Bioeng. 21, 2279 (1979)

    Google Scholar 

  61. Thomas, C. R., Nienow, A. W., Dunnill, P.: ibid. 21, 2263 (1979)

    Google Scholar 

  62. Shah, Y. T., Remmen, T.: J. Heat Mass Transfer 14, 2209 (1971)

    Google Scholar 

  63. Neubeck, C. E.: US 4,233,405, Nov. 11, 1980

    Google Scholar 

  64. Gerstenberg, H., Sittig, W., Zepf, K.: Chem.-Ing.-Tech. 52 (1), 19 (1980)

    Google Scholar 

  65. Wang, D. I. C., Sonoyama, T., Mateles, R. I.: Anal. Biochem., 26, 277 (1968)

    Google Scholar 

  66. Mercer, J. E., in: Proc. Int. Workshop on Techn. for Protein Separation and Improvement of Blood Plasma Fractionation, (H. E. Sandberg ed.), No (NIH) 78-1422, p. 160, Washington DC.: U.S. Govt. Printing Office 1978

    Google Scholar 

  67. Ng, P., Lundblad, J., Mitra, G.: Separation Sci. 11 (5), 499 (1976)

    Google Scholar 

  68. Pace, G. W., Schovin, M. J., Archer, M. C.: Separation Sci. 11 (1), 65 (1976)

    Google Scholar 

  69. Howell, J. A., Velicangil, O., Le, M. S., Herrara Zeppelin, A. L.: Ann. Acad. Sci., N.Y. 369, 355 (1981)

    Google Scholar 

  70. Heinen, W., Lauwers, A. M.: Arch. Microbiol. 106, 201 (1975)

    Google Scholar 

  71. Nielsen, W. K., in: Rotenburger Symp. 1978, Fermentationtechnik, p. 195, 1978

    Google Scholar 

  72. Martinache, L., Henon, M. P., in: Methods of Plasma Protein Fractionation, (Curling, J. M. ed.), p. 223, Acad. Press, London 1980

    Google Scholar 

  73. Barbaric, S., Kozulic, B., Ries, B., Mildner, P.: Biochem. Biophys. Res. Commun. 95 (1), 404 (1980)

    Google Scholar 

  74. Hummel, W., Schütte, H., Kula, M.-R.: Eur. J. Appl. Microbiol. Biotechnol. 12, 22 (1981)

    Google Scholar 

  75. Andersson, R. E.: Biotechnol. Letters 2 (5), 247 (1980)

    Google Scholar 

  76. Wang, D. I. C., Sinskey, A. J., Sonoyama, T.: Biotech. Bioeng. 11, 987 (1969)

    Google Scholar 

  77. Balfanz, T., Hicke, H.-G., Paul, D., Schwarz, H.-H.: Chem. Techn. 31 (11), 557 (1979)

    Google Scholar 

  78. Kroner, K. H., Hustedt, H., Kula, M.-R.: unpublished

    Google Scholar 

  79. Trinel, P. A., Leclerc, H.: Ann. Microbiol. 127B, 201 (176)

    Google Scholar 

  80. Dion, P., Goulet, J., Lachance, R. A.: J. Inst. Can. Sci. Technol. Aliment. 11 (2), 78 (1978)

    Google Scholar 

  81. Bartling, G. J., Barker, C. W.: Biotech. Bioeng. 18, 1023 (1976)

    Google Scholar 

  82. Chambers, R. P., Cohen, W., Baricos, W. H.: Meth. Enzymol. 44, 291 (1976)

    Google Scholar 

  83. Wandrey, C., Flaschel, E.: Adv. Biochem. Eng. 12, 147 (1979)

    Google Scholar 

  84. Hong, J., Tsao, G. T., Wankat, P. C.: Biotechnol. Bioeng. 23, 1501 (1981)

    Google Scholar 

  85. Abbott, B. J., Cerimele, B., Fukuda, D. S.: ibid. 18, 1033 (1976)

    Google Scholar 

  86. Weiss, R.: Doctorjal thesis, TU Hannover, W.-Germany 1978

    Google Scholar 

  87. Wichmann, R.: Doctoral thesis, TU Clausthal, W.-Germany 1981

    Google Scholar 

  88. Roger, L., Thapon, J. L., Maubois, J. L., Brule, G.: Le Lait 551–552, 56 (1976)

    Google Scholar 

  89. Roger, L., Maubois, J. L., Thapon, J. L., Brule, G.: Ann. Nutr. Alim. 32, 657 (1978)

    Google Scholar 

  90. Roger, L., Thapon, J. L., Brule, G., Maubois, J. L.: Nordeuropaeisk mejeri-tidsskrift 77 (1–2), 38 (1977)

    Google Scholar 

  91. Norman, B. E., Severinsen, S. G., Nielsen, T., Wagner, J.: The World Galaxy for the World Dairy Industry, 7, 20 (1978)

    Google Scholar 

  92. Boudrant, J., Cheftel, C.: Biochimie 55, 413 (1973)

    Google Scholar 

  93. Bowski, L., Shah, P. M., Ryu, D. Y., Vieth, W. R.: Biotech. Bioeng. Symp. 3, 229 (1972)

    Google Scholar 

  94. Bowski, L., Ryu, D. Y.: Biotechnol. Bioeng. 16, 697 (1974)

    Google Scholar 

  95. Ryu, D. Y., Bruno, C. F., Lee, B. K., Venkatasubramanian, K.: Ferment. Technol. Today, Proc. IV IFS, p. 307 (1972)

    Google Scholar 

  96. Cawthorne, M. A.: DOS 2,356,630, Int. Cl.: C 07 d, 99/16, 22. Mai 1974

    Google Scholar 

  97. Butterworth, T. A., Wang, D. I. C., Sinskey, A. J.: Biotech. Bioeng. 12, 615 (1970)

    Google Scholar 

  98. Azhar, A., Hamdy, M. K.: ibid. 23, 1297 (1981)

    Google Scholar 

  99. Cinq-Mars, G. V., Howell, J.: ibid. 19, 377 (1977)

    Google Scholar 

  100. Ghose, T. K., Kostick, J. A.: ibid. 12, 921 (1970)

    Google Scholar 

  101. Henley, R. G., Yang, R. Y. K., Greenfield, P. F.: Enzyme Microb. Technol. 2, 206 (1980)

    Google Scholar 

  102. O'Neill, S. P., Wykes, J. R., Dunnill, P., Lilly, M. D.: Biotech. Bioeng. 13, 319 (1971)

    Google Scholar 

  103. Cunningham, S. D., Cater, C. M., Mattil, K. F.: J. Food Sci. 43 (5), 1477 (1978)

    Google Scholar 

  104. Roozen, J. P., Pilnik, W.: Enzyme Microb. Technol. 1, 122 (1979)

    Google Scholar 

  105. Boudrant, J., Cheftel, C.: Biotech. Bioeng. 18, 1735 (1976)

    Google Scholar 

  106. Bhumiratana, S., Hill, C. G., Amundson, C. H.: J. Food. Sci. 42 (4), 1016 (1977)

    Google Scholar 

  107. Payne, R. E., Hill, C. G., Amundson, C. H.: ibid. 43, 385 (1978)

    Google Scholar 

  108. Marshall, J. J., Rabinowitz, M. L.: Biotech. Bioeng. 18, 1325 (1976)

    Google Scholar 

  109. Wykes, J. R., Dunnill, P., Lilly, M. D.: Biochim. Biophys. Acta 250, 522 (1971)

    Google Scholar 

  110. Pilnik, W.: Gordian 75 (5), 208 (1973)

    Google Scholar 

  111. Closset, G. P., Shah, Y. T., Cobb, J. T.: Biotech. Bioeng. 15, 441 (1973)

    Google Scholar 

  112. Katoh, S., Yanagida, T., Sada, E.: J. Chem. Eng. Japan 11 (2), 143 (1978)

    Google Scholar 

  113. Closset, G. P., Cobb, J. T., Shah, Y. T.: Biotech. Bioeng. 16, 345 (1974)

    Google Scholar 

  114. Tachauer, E., Cobb, J. T., Shah, Y. T.: ibid. 16, 545 (1974)

    Google Scholar 

  115. Madgavkar, A. M., Shah, Y. T., Cobb, J. T.: ibid. 19, 1719 (1977)

    Google Scholar 

  116. Howell, J. A., Knapp, J. S., Velicangil, O.: Enzyme Eng. 4, 267 (1978)

    Google Scholar 

  117. Jenq, C. Y., Wang, S. S., Davidson, B.: Enzyme Microb. Technol. 2, 145 (April 1980)

    Google Scholar 

  118. Velicangil, O., Howell, J. A.: Biotech. Bioeng. 19, 1891 (1977)

    Google Scholar 

  119. Velicangil, O., Howell, J. A.: ibid. 23, 843 (1981)

    Google Scholar 

  120. Gregor, H. P.: US 4,033,822, July 5, 1977

    Google Scholar 

  121. Gregor, H. P.: DOS 2,650,920, Int. Cl. C 12 D 13/00, 18. Mai 1977

    Google Scholar 

  122. Simon, S., Bloch, R., Caplan, S. R.: Biotechnol. Appl. Protein Enzymes, p. 169 (1977)

    Google Scholar 

  123. Bloch, R., Caplan, R. S., Simon, S.: DOS 2,553,649, Int. Cl. C 07 B 29/00, 10. Jun. 1976

    Google Scholar 

  124. Schmidt-Kastner, G., in: Bioreaktoren, 2. BMFT — Statusseminar „Bioverfahrenstechnik“ Jülich, 1979, p. 63, Bonn: Bundesministerium für Forschung und Technologie 1979

    Google Scholar 

  125. Cantarella, M., Remy, M. H., Scardi, V.: Chem. Eng. Sci. 34, 1213 (1979)

    Google Scholar 

  126. Cantarella, M., Gianfreda, L., Palescandolo, R., Scardi, V., Greco, G., Alfani, F., Iorio, G.: J. Solic-Phase Biochem. 2 (2), 163 (1977)

    Google Scholar 

  127. Cantarella, M., Remy, M.-H., Scardi, V., Alfani, F., Iorio, G., Greco, G.: Biochem. J. 179, 15 (1979)

    Google Scholar 

  128. Copobianco, G., Drioli, E., Ragosta, G.: J. Solid-Phase Biochem. 2 (4), 315 (1977)

    Google Scholar 

  129. Drioli, E., Bellucci, F.: Desalination 26, 17 (1978)

    Google Scholar 

  130. Drioli, E., Scardi, V.: J. Membr. Sci. 1, 237 (1976)

    Google Scholar 

  131. Drioli, E., Mendia, J., Molinari, R.: Desalination 24, 193 (1978)

    Google Scholar 

  132. Gianfreda, L., Greco, G.: Biotechnol. Letters 3 (1), 33 (1981)

    Google Scholar 

  133. Greco, G., Alfani, F., Cantarella, M., Gianfreda, L., Palescandolo, R., Scardi, V.: Chem. Eng. Commun. 7, 145 (1980)

    Google Scholar 

  134. Greco, G., Albanesi, D., Cantarella, M., Gianfreda, L., Palescandolo, R., Scardi, V.: Eur. J. Appl. Microbiol. Biotechnol. 8, 249 (1979)

    Google Scholar 

  135. Greco, G., Albanesi, D., Cantarella, M., Scardi, V.: Biotech. Bioeng. 22, 215 (1980)

    Google Scholar 

  136. Greco, G., Alfani, F., Iorio, G., Cantarella, M., Formisano, A., Gianfreda, L., Palescandolo, R., Scardi, V.: ibid. 21, 1421 (1979)

    Google Scholar 

  137. Scardi, V., Cantarella, M., Gianfreda, L., Palescandolo, R., Alfani, F., Greco, G.: Biochimie 62, 635 (1980)

    Google Scholar 

  138. Maculan, T. P., Hourigan, J. A., Rand, A. G.: J. Dairy Sci. 61 (suppl. 1), 114 (1978)

    Google Scholar 

  139. Drioli, E., Gianfreda, L., Palescandolo, R., Scardi, V.: Biotech. Bioeng. 17, 1365 (1975)

    Google Scholar 

  140. Vorsilak, P., McCoy, B. J., Merson, R. L.: J. Food Sci. 40, 431 (1975)

    Google Scholar 

  141. Furukawa, S., Katayama, N., Iizuka, T., Urabe, I., Okada, H.: FEBS Letters, 121 (2), 239 (1980)

    Google Scholar 

  142. Bueckmann, A. F., Morr, M., Johansson, G.: Makromol. Chem. (in press)

    Google Scholar 

  143. Bueckmann, A. F., Kula, M.-R., Wichmann, R., Wandrey, C.: J. Appl. Biochem. (in press)

    Google Scholar 

  144. Malinauskas, A. A., Kulis, J. J.: Appl. Biochem. Microbiol. 14 (6), 706 (1978)

    Google Scholar 

  145. Yamazaki, Y., Maeda, H., Suzuki, H.: Biotech. Bioeng. 18, 1761 (1976)

    Google Scholar 

  146. Coughlin, R. W., Aizawa, M., Charles, M.: ibid. 18, 199 (1976)

    Google Scholar 

  147. Furukawa, S., Urabe, I., Okada, H.: Eur. J. Biochem. 114, 101 (1981)

    Google Scholar 

  148. Furukawa, S., Sugimoto, Y., Urabe, I., Okada, H.: Biochimie 62, 629 (1980)

    Google Scholar 

  149. Muramatsu, M., Urabe, I., Yamada, Y., Okada, H.: Eur. J. Biochem. 80, 111 (1977)

    Google Scholar 

  150. Weibel, M. K., Fuller, C. W., Stadel, J. M., Bückmann, A. F. E. P., Doyle, T., Bright, H. J.: Enzyme Eng. 2, 203 (1974)

    Google Scholar 

  151. Wykes, J. R., Dunnill, P., Lilly, M. D.: Biochim. Biophys. Acta 286, 260 (1972)

    Google Scholar 

  152. Wykes, J. R., Dunnill, P., Lilly, M. D.: Biotech. Bioeng. 17, 51 (1975)

    Google Scholar 

  153. Yamazaki, Y., Maeda, H., Suzuki, H.: Eur. J. Biochem. 77, 511 (1977)

    Google Scholar 

  154. Wandrey, C., Wichmann, R., Bueckmann, A. F., Kula, M.-R.: Enzyme Eng. 6, 453 (1980)

    Google Scholar 

  155. Wichmann, R., Wandrey, C., Bueckmann, A. F., Kula, M.-R.: Biotech. Bioeng. 23 (12) (1981)

    Google Scholar 

  156. Pace, G. W., Yang, H. S., Tannenbaum, S. R., Archer, M. C.: ibid. 18, 1413 (1976)

    Google Scholar 

  157. De Rosa, M., Gambacorta, A., Esposito, E., Drioli, E., Gaeta, S.: Biochimie 62, 517 (1980)

    Google Scholar 

  158. Drioli, E., Iorio, G., Molinari, R., De Rosa, M., Gambacorta, A., Esposito, E.: Biotech. Bioeng. 23, 221 (1981)

    Google Scholar 

  159. Drioli, E., Gaeta, S., Carfagna, C., De Rosa, M., Gambacorta, A., Nicolaus, B.: J. Membrane Sci. 6, 345 (1980)

    Google Scholar 

  160. Wang, D. I. C., Sinskey, A. J., Butterworth, T. A., in: Membrane Science and Technology, (Flinn, E. ed.), p. 99, Plenum Press, New York 1970

    Google Scholar 

  161. Margaritis, A., Wilke, C. R.: Devel. Industrial Microbiol. 14, 159 (1972)

    Google Scholar 

  162. Goto, S., Kuwajima, T., Okamoto, R., Inui, T.: J. Ferment. Technol. 57 (1), 47 (1979)

    Google Scholar 

  163. Wang, S. S., King, C.-K.: Adv. Biochem. Eng. 12, 119 (1979)

    Google Scholar 

  164. Jeffries, T. W., Omstead, D. R., Cardenas, R. R., Gregor, H. P.: Biotech. Bioeng. Symp. 8, 37 (1979)

    Google Scholar 

  165. Lambert, S., Jamet, B.: Fr. 2,340,451-C 16, 3. Jul. 1980

    Google Scholar 

  166. Walon, R. G. P.: Dos 2,039,222, Int. Cl. C 12 d, 13/10, 25. Feb. 1971; Fr. 2,056,692, 18 Jun. 1971

    Google Scholar 

  167. Deeslie, W. D., Cheryan, M.: J. Food Sci. 46, 1035 (1981)

    Google Scholar 

  168. Cheryan, M., Deeslie, W. D., in: Polymer Science and Technology, Vol. 13, Ultrafiltration Membranes and Applications, (Cooper, A. R. ed.), p. 591, New York: Plenum Press, New York 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Flaschel, E., Wandrey, C., Kula, MR. (1983). Ultrafiltration for the separation of biocatalysts. In: Downstream Processing. Advances in Biochemical Engineering/Biotechnology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0001861

Download citation

  • DOI: https://doi.org/10.1007/BFb0001861

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12096-4

  • Online ISBN: 978-3-540-39537-9

  • eBook Packages: Springer Book Archive