Advertisement

Ultrafiltration for the separation of biocatalysts

Conference paper
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 26)

Abstract

The application of ultrafiltration in biotechnology is reviewed emphasizing the separation of catalytically active species. Ultrafiltration as a separation process as well as its application to membrane reactors is analyzed. On the basis of an application-oriented theory of ultrafiltration, the essential aspects for process design are described. A survey of applications is given.

Ultrafiltration has proved to be a very versatile separation process for biocatalysts owing to the possibility of independently adjusting the temperature, the avoidance of phase transition and the low energy requirement. It will be shown that ultrafiltration devices, suitable for the isolation of biocatalysts, can also be applied efficiently for their re-use in catalytic processes. The main advantages of employing biocatalysts in ultrafiltration membrane reactors are that continuous operation is possible in homogeneous phase and that immobilization know-how is not required.

Future trends can be predicted with respect to the development of sterilisable membranes with improved narrow pore size distribution and with surfaces that will not affect fragile biocatalysts. Continuous coenzyme regeneration in membrane reactors and biomass recycling in continuous fermentation processes, in order to uncouple the retention time of the catalyst from the hydraulic retention time will result in increased application.

Keywords

Concentration Polarization Membrane Reactor Continuous Stir Tank Reactor Ultrafiltration Membrane Transmembrane Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

Symbols and commonly used units

a m2 m−3

volume specific area

A m2

area

c mol m−3

concentration

D m2 s−1

diffusion coefficient

d m

diameter

E kg m−3

enzyme concentration

Ea J mol−1

energy of activation

f

ratio

J m s−1

flux (area specific volumetric flow rate)

Ji mol m−2 s−1

molar flux of substance i

k2 mol kg−1 s−1

reaction rate constant

kd m s−1

mass-transfer coefficient

kde s−1

deactivation rate constant

Kic mol m−3

constant for competitive product inhibition

Km mol m−3

Michaelis-Menten constant

l m

length

m kg

mass

M kg kmol−1

molar mass

n

number of stage(s)

p Pa=N m−2

pressure

r m

radius

rm mol kg−1 s−1

catalyst mass specific reaction rate

¯rm mol kg−1 s−1

catalyst mass specific productivity

rv mol m−3 s−1

reactor volume specific reaction rate

R

apparent retention

Rm

intrinsic retention

S mol m−3

substrate concentration

t s

time

¯t s

mean residence time

u m s−1

linear velocity

V m3

volume

V m3 s−1

volumetric flow rate

W Pa s m−1

hydraulic resistance

X

substrate conversion

x m

local coordinate

Greek symbols

γ s−1

shear rate (absolute value)

δ m

laminar boundary layer thickness

ε

porosity

η Pa s

dynamic viscosity

ν m2 s−1

kinematic viscosity

π Pa

osmotic pressure

ϱ kg m−3

density

σp2 m2

variance of pore diameter

σi2 m2

variance of particle diameter

τ Pa

shear stress

τm kg s m−3

catalyst mass referred space time

θ

dimensionless time (t/¯t)

Indices

b

bulk phase

c

convective

d

diffusive — (excl. kd)

e

end-, final

E

enzyme

f

filtrate

g

gel

h

hydraulic

i

referred to species i

m

membrane- (excl. τm rm, Km)

n

referred to stage n, number of stages

o

initial-, feed

p

pore

P

productivity referred

r

radial

R

reactor

s

saturation

S

separation unit

t

tube

V

volume

w

water (eluant)

max

maximum

opt

optimum

rec

recycle

Σ

total

Abbreviations

ADH

alcohol dehydrogenase

A(D)TP

adenosine (di)triphosphate

AlaDH

alanine dehydrogenase

CMR

cascade of completely equipped UFMR

CRMR

cascade recycle membrane reactor

CSTR

continuous stirred tank reactor (ideal)

FDH

formate dehydrogenase

LDH

lactate dehydrogenase

LeuDH

leucine dehydrogenase

MR

membrane reactor (general)

PEG

polyethylene glycol

PFTR

plug flow tubular reactor

PVA

polyvinyl alcohol

PWTR

porous wall tubular reactor

SBR

stirred batch reactor

TRMR

tubular recycle membrane reactor

UFMR

continuously operated single stage ultrafiltration membrane reactorx

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michaels, A. S., in: Polymer Science and Technology, Vol. 13, Ultrafiltration Membranes and Applications, (Cooper, A. R. ed.), p. 1, Plenum Press, New York 1980Google Scholar
  2. 2.
    Sourirajan, S., Loeb, S.: Advan. Chem. Ser. 38, 117 (1962)Google Scholar
  3. 3.
    Michaels, A. S.: CHEMTECH, p. 36 Jan. 1981Google Scholar
  4. 4.
    Madsen, R. F.: Hyperfiltration and Ultrafiltration in Plate-and-Frame Systems, Elsevier Publ. Co., 1977Google Scholar
  5. 5.
    Strathmann, H.: Chem. Tech. 7 (8), 333 (1978)Google Scholar
  6. 6.
    Porter, M. C.: Ind. Eng. Chem. Prod. Res. Develop. 11 (3), 234 (1972)Google Scholar
  7. 7.
    Rauch, K.: Doctoral thesis, TH Aachen, W.-Germany 1978Google Scholar
  8. 8.
    Blatt, W. F., Feinberg, M. P., Hopfenberg, H. B.: Science 160, 224 (1965)Google Scholar
  9. 9.
    Michaels, A. S., in: Progress in Separation and Purification, Vol. 1, p. 297, Wiley & Sons, 1968Google Scholar
  10. 10.
    Blatt, W. F., Hudson, B. G., Robinson, S. M., Zipilivan, E. M.: Anal. Biochem. 22, 161 (1968)Google Scholar
  11. 11.
    BMFT-Mitteilungen 4, p. 60, Bonn: Bundesministerium für Forschung und Technologie 1982Google Scholar
  12. 12.
    Graetz, L.: Ann. Physik. 25, 337 (1885)Google Scholar
  13. 13.
    Lévêque, J.: Ann. Mines, 14, 201, 305, 381 (1928)Google Scholar
  14. 14.
    Gröber, H., Erk, S., Grigull, V.: Fundamentals of Heat Transfer, p. 233, McGraw-Hill, New York 1961Google Scholar
  15. 15.
    Dittus, F. W., Boelter, L. M.: Univ. Calif., Berkeley, Publ. Eng. 2, 443 (1930)Google Scholar
  16. 16.
    Harriott, P., Hamilton, R. M.: Chem. Eng. Sci. 20, 1073 (1965)Google Scholar
  17. 17.
    Blatt, W. F., Dravid, A., Michaels, A. S., Nelson, L., in: Membrane Science and Technology, (Flinn, J. E. ed.), p. 47, Plenum Press, New York-London 1970Google Scholar
  18. 18.
    Pitera, E. W., Middleman, S.: Ind. Eng. Chem., Process Des. Develop. 12 (1), 52 (1973)Google Scholar
  19. 19.
    Copas, A. L., Middlemann, S.: ibid. 14 (2), 143 (1974)Google Scholar
  20. 20.
    Shen, J. J. S., Probstein, R. F.: ibid. 18 (3), 547 (1979)Google Scholar
  21. 21.
    Probstein, R. F., Shen, J. S., Leung, W. F.: Desalination 24, 1 (1978)Google Scholar
  22. 22.
    Van der Waal, M. J., Van der Velden, P. M., Koning, J., Smolders, C. A., van Swaay, W. P. M.: Desalination 22, 465 (1977)Google Scholar
  23. 23.
    Bixler, H. J., Rappe, G. C.: US 3,541,006, Nov. 17, 1970Google Scholar
  24. 24.
    Ebner, H., Enenkel, A.: US 3,974,068, Aug. 10, 1976Google Scholar
  25. 25.
    Ebner, H.: Chem.-Ing.-Tech. 53, 25 (1981)Google Scholar
  26. 26.
    Brown, C. E., Tulin, M. P., Van Dyke, P.: Chem. Eng. Progr., Symp. Series, Vol. 67 (114), p. 174, 1971Google Scholar
  27. 27.
    Holtz, H. W.: Doctoral thesis, TH Aachen, W.-Germany 1979Google Scholar
  28. 28.
    Rautenbach, R., Holtz, H.: Chem.-Ing.-Tech. 51 (12), 1241 (1979)Google Scholar
  29. 29.
    Leung, W.-F., Probstein, R. F.: Ind. Eng. Chem. Fund. 18 (3), 274 (1979)Google Scholar
  30. 30.
    Goldsmith, R. L., de Filippi, R. P., Hossain, S., Timmins, R. S., in: Membrane Processes in Industry and Biomedicine, (Bier, M. ed.), p. 267, Plenum Press, New York-London 1971Google Scholar
  31. 31.
    Yan, S. H., Hill, C. G., Amundson, C. H.: J. Dairy Sci. 62 (1), 23 (1979)Google Scholar
  32. 32.
    Baker, R. W., Strathmann, H.: J. Appl. Polymer Sci. 14, 1197 (1970)Google Scholar
  33. 33.
    Breslau, B. R., Kilcullen, B. M.: Enzyme Eng. 3, 179 (1975)Google Scholar
  34. 34.
    Flaschel, E., Wandrey, C., in: Characterization of Immobilized Biocatalysts, DECHEMA Monogr., Vol. 84, p. 337, Verlag Chemie, Weinheim 1979Google Scholar
  35. 35.
    Lonsdale, H. K., in: Industrical Processing with Membranes, (Lacey, R. E., Loeb, S. eds.), chapter VIII, p. 123, Wiley Interscience, New York 1972Google Scholar
  36. 36.
    de Filippi, R. P.: Chem. Proc. Eng. N.Y. 10, 475 (1977)Google Scholar
  37. 37.
    Flaschel, E.: Enzyme Eng. 6, 57 (1980)Google Scholar
  38. 38.
    Timmins, R. S., in: Freeze Drying and Advanced Food Techn., (Goldblith, S. A., Rey, L., Rothmayr, W. W. eds.), chapter 31, p. 503, Academic Press, London 1975Google Scholar
  39. 39.
    Michaels, A. S.: Sep. Sci. Technol. 15 (6), 1305 (1980)Google Scholar
  40. 40.
    Jandel, L., Schulte, B., Bückmann, A. F., Wandrey, C.: J. Membrane Sci. 7, 185 (1980)Google Scholar
  41. 41.
    Butterworth, T. A., Wang, D. I. C.: Ferment. Technol. Today, Proc. IV IFS, p. 195, 1972Google Scholar
  42. 42.
    Blatt, W. F.: J. Agr. Food Chem. 19 (4), 589 (1971)Google Scholar
  43. 43.
    Hatch, R. T., Price, J. D.: AIChE Symp. Ser. 74, No. 172, 226 (1978)Google Scholar
  44. 44.
    Tutunjian, R. S., Reti, A. R.: AIChE. Symp. Ser. 74, No. 178, 210 (1978)Google Scholar
  45. 45.
    Melling, J.: Process Biochem., p. 7, Sept. 1974Google Scholar
  46. 46.
    Wandrey, C., Flaschel, E., Schügerl, K.: Ger. Chem. Eng. 1, 39 (1978)Google Scholar
  47. 47.
    Charm, S. E., Wong, B. L.: Biotech. Bioeng. 12, 1103 (1970)Google Scholar
  48. 48.
    Charm, S. E., Wong, B. L.: Biorheology 12, 275 (1975)Google Scholar
  49. 49.
    Tirrell, M., Middleman, S.: Biotechnol. Bioeng. 17, 299 (1975)Google Scholar
  50. 50.
    Reese, E. T., Ryu, D. Y.: Enzyme Microb. Technol. 2, 239 (1980)Google Scholar
  51. 51.
    Charm, S. E., Wong, B. L.: Science 170, 466 (1970)Google Scholar
  52. 52.
    Charm, S. E., Wong, B. L.: Biotech. Bioeng. 20, 451 (1978)Google Scholar
  53. 53.
    Charm, S. E., Matteo, C. C.: Meth. Enzymol. 22, 476 (1971)Google Scholar
  54. 54.
    Charm, S. E., Lai, C. J.: Biotech. Bioeng. 13, 185 (1971)Google Scholar
  55. 55.
    Virkar, P. D., Narendranathan, T. J., Hoare, M., Dunnill, P.: ibid. 23, 425 (1981)Google Scholar
  56. 56.
    Tirrell, M., Middleman, S.: ibid. 20, 605 (1978)Google Scholar
  57. 57.
    Tirrell, M., Middleman, S.: Biophys. J. 23, 121 (1978)Google Scholar
  58. 58.
    Tirrell, M.: J. Bioeng. 2, 183–193 (1978)Google Scholar
  59. 59.
    Charm, S. E., Wong, B. L.: Enzyme Microb. Technol. 3, 111 (April 1980)Google Scholar
  60. 60.
    Thomas, C. R., Dunnill, P.: Biotech. Bioeng. 21, 2279 (1979)Google Scholar
  61. 61.
    Thomas, C. R., Nienow, A. W., Dunnill, P.: ibid. 21, 2263 (1979)Google Scholar
  62. 62.
    Shah, Y. T., Remmen, T.: J. Heat Mass Transfer 14, 2209 (1971)Google Scholar
  63. 63.
    Neubeck, C. E.: US 4,233,405, Nov. 11, 1980Google Scholar
  64. 64.
    Gerstenberg, H., Sittig, W., Zepf, K.: Chem.-Ing.-Tech. 52 (1), 19 (1980)Google Scholar
  65. 65.
    Wang, D. I. C., Sonoyama, T., Mateles, R. I.: Anal. Biochem., 26, 277 (1968)Google Scholar
  66. 66.
    Mercer, J. E., in: Proc. Int. Workshop on Techn. for Protein Separation and Improvement of Blood Plasma Fractionation, (H. E. Sandberg ed.), No (NIH) 78-1422, p. 160, Washington DC.: U.S. Govt. Printing Office 1978Google Scholar
  67. 67.
    Ng, P., Lundblad, J., Mitra, G.: Separation Sci. 11 (5), 499 (1976)Google Scholar
  68. 68.
    Pace, G. W., Schovin, M. J., Archer, M. C.: Separation Sci. 11 (1), 65 (1976)Google Scholar
  69. 69.
    Howell, J. A., Velicangil, O., Le, M. S., Herrara Zeppelin, A. L.: Ann. Acad. Sci., N.Y. 369, 355 (1981)Google Scholar
  70. 70.
    Heinen, W., Lauwers, A. M.: Arch. Microbiol. 106, 201 (1975)Google Scholar
  71. 71.
    Nielsen, W. K., in: Rotenburger Symp. 1978, Fermentationtechnik, p. 195, 1978Google Scholar
  72. 72.
    Martinache, L., Henon, M. P., in: Methods of Plasma Protein Fractionation, (Curling, J. M. ed.), p. 223, Acad. Press, London 1980Google Scholar
  73. 73.
    Barbaric, S., Kozulic, B., Ries, B., Mildner, P.: Biochem. Biophys. Res. Commun. 95 (1), 404 (1980)Google Scholar
  74. 74.
    Hummel, W., Schütte, H., Kula, M.-R.: Eur. J. Appl. Microbiol. Biotechnol. 12, 22 (1981)Google Scholar
  75. 75.
    Andersson, R. E.: Biotechnol. Letters 2 (5), 247 (1980)Google Scholar
  76. 76.
    Wang, D. I. C., Sinskey, A. J., Sonoyama, T.: Biotech. Bioeng. 11, 987 (1969)Google Scholar
  77. 77.
    Balfanz, T., Hicke, H.-G., Paul, D., Schwarz, H.-H.: Chem. Techn. 31 (11), 557 (1979)Google Scholar
  78. 78.
    Kroner, K. H., Hustedt, H., Kula, M.-R.: unpublishedGoogle Scholar
  79. 79.
    Trinel, P. A., Leclerc, H.: Ann. Microbiol. 127B, 201 (176)Google Scholar
  80. 80.
    Dion, P., Goulet, J., Lachance, R. A.: J. Inst. Can. Sci. Technol. Aliment. 11 (2), 78 (1978)Google Scholar
  81. 81.
    Bartling, G. J., Barker, C. W.: Biotech. Bioeng. 18, 1023 (1976)Google Scholar
  82. 82.
    Chambers, R. P., Cohen, W., Baricos, W. H.: Meth. Enzymol. 44, 291 (1976)Google Scholar
  83. 83.
    Wandrey, C., Flaschel, E.: Adv. Biochem. Eng. 12, 147 (1979)Google Scholar
  84. 84.
    Hong, J., Tsao, G. T., Wankat, P. C.: Biotechnol. Bioeng. 23, 1501 (1981)Google Scholar
  85. 85.
    Abbott, B. J., Cerimele, B., Fukuda, D. S.: ibid. 18, 1033 (1976)Google Scholar
  86. 86.
    Weiss, R.: Doctorjal thesis, TU Hannover, W.-Germany 1978Google Scholar
  87. 87.
    Wichmann, R.: Doctoral thesis, TU Clausthal, W.-Germany 1981Google Scholar
  88. 88.
    Roger, L., Thapon, J. L., Maubois, J. L., Brule, G.: Le Lait 551–552, 56 (1976)Google Scholar
  89. 89.
    Roger, L., Maubois, J. L., Thapon, J. L., Brule, G.: Ann. Nutr. Alim. 32, 657 (1978)Google Scholar
  90. 90.
    Roger, L., Thapon, J. L., Brule, G., Maubois, J. L.: Nordeuropaeisk mejeri-tidsskrift 77 (1–2), 38 (1977)Google Scholar
  91. 91.
    Norman, B. E., Severinsen, S. G., Nielsen, T., Wagner, J.: The World Galaxy for the World Dairy Industry, 7, 20 (1978)Google Scholar
  92. 92.
    Boudrant, J., Cheftel, C.: Biochimie 55, 413 (1973)Google Scholar
  93. 93.
    Bowski, L., Shah, P. M., Ryu, D. Y., Vieth, W. R.: Biotech. Bioeng. Symp. 3, 229 (1972)Google Scholar
  94. 94.
    Bowski, L., Ryu, D. Y.: Biotechnol. Bioeng. 16, 697 (1974)Google Scholar
  95. 95.
    Ryu, D. Y., Bruno, C. F., Lee, B. K., Venkatasubramanian, K.: Ferment. Technol. Today, Proc. IV IFS, p. 307 (1972)Google Scholar
  96. 96.
    Cawthorne, M. A.: DOS 2,356,630, Int. Cl.: C 07 d, 99/16, 22. Mai 1974Google Scholar
  97. 97.
    Butterworth, T. A., Wang, D. I. C., Sinskey, A. J.: Biotech. Bioeng. 12, 615 (1970)Google Scholar
  98. 98.
    Azhar, A., Hamdy, M. K.: ibid. 23, 1297 (1981)Google Scholar
  99. 99.
    Cinq-Mars, G. V., Howell, J.: ibid. 19, 377 (1977)Google Scholar
  100. 100.
    Ghose, T. K., Kostick, J. A.: ibid. 12, 921 (1970)Google Scholar
  101. 101.
    Henley, R. G., Yang, R. Y. K., Greenfield, P. F.: Enzyme Microb. Technol. 2, 206 (1980)Google Scholar
  102. 102.
    O'Neill, S. P., Wykes, J. R., Dunnill, P., Lilly, M. D.: Biotech. Bioeng. 13, 319 (1971)Google Scholar
  103. 103.
    Cunningham, S. D., Cater, C. M., Mattil, K. F.: J. Food Sci. 43 (5), 1477 (1978)Google Scholar
  104. 104.
    Roozen, J. P., Pilnik, W.: Enzyme Microb. Technol. 1, 122 (1979)Google Scholar
  105. 105.
    Boudrant, J., Cheftel, C.: Biotech. Bioeng. 18, 1735 (1976)Google Scholar
  106. 106.
    Bhumiratana, S., Hill, C. G., Amundson, C. H.: J. Food. Sci. 42 (4), 1016 (1977)Google Scholar
  107. 107.
    Payne, R. E., Hill, C. G., Amundson, C. H.: ibid. 43, 385 (1978)Google Scholar
  108. 108.
    Marshall, J. J., Rabinowitz, M. L.: Biotech. Bioeng. 18, 1325 (1976)Google Scholar
  109. 109.
    Wykes, J. R., Dunnill, P., Lilly, M. D.: Biochim. Biophys. Acta 250, 522 (1971)Google Scholar
  110. 110.
    Pilnik, W.: Gordian 75 (5), 208 (1973)Google Scholar
  111. 111.
    Closset, G. P., Shah, Y. T., Cobb, J. T.: Biotech. Bioeng. 15, 441 (1973)Google Scholar
  112. 112.
    Katoh, S., Yanagida, T., Sada, E.: J. Chem. Eng. Japan 11 (2), 143 (1978)Google Scholar
  113. 113.
    Closset, G. P., Cobb, J. T., Shah, Y. T.: Biotech. Bioeng. 16, 345 (1974)Google Scholar
  114. 114.
    Tachauer, E., Cobb, J. T., Shah, Y. T.: ibid. 16, 545 (1974)Google Scholar
  115. 115.
    Madgavkar, A. M., Shah, Y. T., Cobb, J. T.: ibid. 19, 1719 (1977)Google Scholar
  116. 116.
    Howell, J. A., Knapp, J. S., Velicangil, O.: Enzyme Eng. 4, 267 (1978)Google Scholar
  117. 117.
    Jenq, C. Y., Wang, S. S., Davidson, B.: Enzyme Microb. Technol. 2, 145 (April 1980)Google Scholar
  118. 118.
    Velicangil, O., Howell, J. A.: Biotech. Bioeng. 19, 1891 (1977)Google Scholar
  119. 119.
    Velicangil, O., Howell, J. A.: ibid. 23, 843 (1981)Google Scholar
  120. 120.
    Gregor, H. P.: US 4,033,822, July 5, 1977Google Scholar
  121. 121.
    Gregor, H. P.: DOS 2,650,920, Int. Cl. C 12 D 13/00, 18. Mai 1977Google Scholar
  122. 122.
    Simon, S., Bloch, R., Caplan, S. R.: Biotechnol. Appl. Protein Enzymes, p. 169 (1977)Google Scholar
  123. 123.
    Bloch, R., Caplan, R. S., Simon, S.: DOS 2,553,649, Int. Cl. C 07 B 29/00, 10. Jun. 1976Google Scholar
  124. 124.
    Schmidt-Kastner, G., in: Bioreaktoren, 2. BMFT — Statusseminar „Bioverfahrenstechnik“ Jülich, 1979, p. 63, Bonn: Bundesministerium für Forschung und Technologie 1979Google Scholar
  125. 125.
    Cantarella, M., Remy, M. H., Scardi, V.: Chem. Eng. Sci. 34, 1213 (1979)Google Scholar
  126. 126.
    Cantarella, M., Gianfreda, L., Palescandolo, R., Scardi, V., Greco, G., Alfani, F., Iorio, G.: J. Solic-Phase Biochem. 2 (2), 163 (1977)Google Scholar
  127. 127.
    Cantarella, M., Remy, M.-H., Scardi, V., Alfani, F., Iorio, G., Greco, G.: Biochem. J. 179, 15 (1979)Google Scholar
  128. 128.
    Copobianco, G., Drioli, E., Ragosta, G.: J. Solid-Phase Biochem. 2 (4), 315 (1977)Google Scholar
  129. 129.
    Drioli, E., Bellucci, F.: Desalination 26, 17 (1978)Google Scholar
  130. 130.
    Drioli, E., Scardi, V.: J. Membr. Sci. 1, 237 (1976)Google Scholar
  131. 131.
    Drioli, E., Mendia, J., Molinari, R.: Desalination 24, 193 (1978)Google Scholar
  132. 132.
    Gianfreda, L., Greco, G.: Biotechnol. Letters 3 (1), 33 (1981)Google Scholar
  133. 133.
    Greco, G., Alfani, F., Cantarella, M., Gianfreda, L., Palescandolo, R., Scardi, V.: Chem. Eng. Commun. 7, 145 (1980)Google Scholar
  134. 134.
    Greco, G., Albanesi, D., Cantarella, M., Gianfreda, L., Palescandolo, R., Scardi, V.: Eur. J. Appl. Microbiol. Biotechnol. 8, 249 (1979)Google Scholar
  135. 135.
    Greco, G., Albanesi, D., Cantarella, M., Scardi, V.: Biotech. Bioeng. 22, 215 (1980)Google Scholar
  136. 136.
    Greco, G., Alfani, F., Iorio, G., Cantarella, M., Formisano, A., Gianfreda, L., Palescandolo, R., Scardi, V.: ibid. 21, 1421 (1979)Google Scholar
  137. 137.
    Scardi, V., Cantarella, M., Gianfreda, L., Palescandolo, R., Alfani, F., Greco, G.: Biochimie 62, 635 (1980)Google Scholar
  138. 138.
    Maculan, T. P., Hourigan, J. A., Rand, A. G.: J. Dairy Sci. 61 (suppl. 1), 114 (1978)Google Scholar
  139. 139.
    Drioli, E., Gianfreda, L., Palescandolo, R., Scardi, V.: Biotech. Bioeng. 17, 1365 (1975)Google Scholar
  140. 140.
    Vorsilak, P., McCoy, B. J., Merson, R. L.: J. Food Sci. 40, 431 (1975)Google Scholar
  141. 141.
    Furukawa, S., Katayama, N., Iizuka, T., Urabe, I., Okada, H.: FEBS Letters, 121 (2), 239 (1980)Google Scholar
  142. 142.
    Bueckmann, A. F., Morr, M., Johansson, G.: Makromol. Chem. (in press)Google Scholar
  143. 143.
    Bueckmann, A. F., Kula, M.-R., Wichmann, R., Wandrey, C.: J. Appl. Biochem. (in press)Google Scholar
  144. 144.
    Malinauskas, A. A., Kulis, J. J.: Appl. Biochem. Microbiol. 14 (6), 706 (1978)Google Scholar
  145. 145.
    Yamazaki, Y., Maeda, H., Suzuki, H.: Biotech. Bioeng. 18, 1761 (1976)Google Scholar
  146. 146.
    Coughlin, R. W., Aizawa, M., Charles, M.: ibid. 18, 199 (1976)Google Scholar
  147. 147.
    Furukawa, S., Urabe, I., Okada, H.: Eur. J. Biochem. 114, 101 (1981)Google Scholar
  148. 148.
    Furukawa, S., Sugimoto, Y., Urabe, I., Okada, H.: Biochimie 62, 629 (1980)Google Scholar
  149. 149.
    Muramatsu, M., Urabe, I., Yamada, Y., Okada, H.: Eur. J. Biochem. 80, 111 (1977)Google Scholar
  150. 150.
    Weibel, M. K., Fuller, C. W., Stadel, J. M., Bückmann, A. F. E. P., Doyle, T., Bright, H. J.: Enzyme Eng. 2, 203 (1974)Google Scholar
  151. 151.
    Wykes, J. R., Dunnill, P., Lilly, M. D.: Biochim. Biophys. Acta 286, 260 (1972)Google Scholar
  152. 152.
    Wykes, J. R., Dunnill, P., Lilly, M. D.: Biotech. Bioeng. 17, 51 (1975)Google Scholar
  153. 153.
    Yamazaki, Y., Maeda, H., Suzuki, H.: Eur. J. Biochem. 77, 511 (1977)Google Scholar
  154. 154.
    Wandrey, C., Wichmann, R., Bueckmann, A. F., Kula, M.-R.: Enzyme Eng. 6, 453 (1980)Google Scholar
  155. 155.
    Wichmann, R., Wandrey, C., Bueckmann, A. F., Kula, M.-R.: Biotech. Bioeng. 23 (12) (1981)Google Scholar
  156. 156.
    Pace, G. W., Yang, H. S., Tannenbaum, S. R., Archer, M. C.: ibid. 18, 1413 (1976)Google Scholar
  157. 157.
    De Rosa, M., Gambacorta, A., Esposito, E., Drioli, E., Gaeta, S.: Biochimie 62, 517 (1980)Google Scholar
  158. 158.
    Drioli, E., Iorio, G., Molinari, R., De Rosa, M., Gambacorta, A., Esposito, E.: Biotech. Bioeng. 23, 221 (1981)Google Scholar
  159. 159.
    Drioli, E., Gaeta, S., Carfagna, C., De Rosa, M., Gambacorta, A., Nicolaus, B.: J. Membrane Sci. 6, 345 (1980)Google Scholar
  160. 160.
    Wang, D. I. C., Sinskey, A. J., Butterworth, T. A., in: Membrane Science and Technology, (Flinn, E. ed.), p. 99, Plenum Press, New York 1970Google Scholar
  161. 161.
    Margaritis, A., Wilke, C. R.: Devel. Industrial Microbiol. 14, 159 (1972)Google Scholar
  162. 162.
    Goto, S., Kuwajima, T., Okamoto, R., Inui, T.: J. Ferment. Technol. 57 (1), 47 (1979)Google Scholar
  163. 163.
    Wang, S. S., King, C.-K.: Adv. Biochem. Eng. 12, 119 (1979)Google Scholar
  164. 164.
    Jeffries, T. W., Omstead, D. R., Cardenas, R. R., Gregor, H. P.: Biotech. Bioeng. Symp. 8, 37 (1979)Google Scholar
  165. 165.
    Lambert, S., Jamet, B.: Fr. 2,340,451-C 16, 3. Jul. 1980Google Scholar
  166. 166.
    Walon, R. G. P.: Dos 2,039,222, Int. Cl. C 12 d, 13/10, 25. Feb. 1971; Fr. 2,056,692, 18 Jun. 1971Google Scholar
  167. 167.
    Deeslie, W. D., Cheryan, M.: J. Food Sci. 46, 1035 (1981)Google Scholar
  168. 168.
    Cheryan, M., Deeslie, W. D., in: Polymer Science and Technology, Vol. 13, Ultrafiltration Membranes and Applications, (Cooper, A. R. ed.), p. 591, New York: Plenum Press, New York 1980Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  1. 1.Institut de Génie ChimiqueEcole Polytechnique Fédérale de LausanneEcublensSwitzerland
  2. 2.Institut für BiotechnologieKernforschungsanlage JülichJülichGermany
  3. 3.Gesellschaft für Biotechnologische ForschungBraunschweig-StöckheimGermany

Personalised recommendations