Skip to main content

Production of ethanol from lignocellulosic materials: State of the art

  • Conference paper
  • First Online:
Book cover Bioprocesses and Applied Enzymology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 42))

Abstract

Production of ethanol from sugar (hexoses) and starchis carried out by a well developed technology. Production of ethanol from lignocellulosic materials is more difficult, requires several process steps, and is as yet in the development stage.

If the polysaccharides in the lignocellulosic materials are to be saccharified via enzymic hydrolysis, the raw material must be pretreated if a high yield of sugars is to be expected. Pretreatment of the raw material with steam at high temperature and pressure is the preferred method. With this process substantial parts of the lignin and the hemicelluloses are degraded to products extractable with water, ethanol or alkaline solutions. Even if further development of this pretreatment technique may be necessary it is clear that the already existing technique can be used on a commercial scale.

The enzymic hydrolysis of complicated solid substrates as are the lignocellulosic materials is a slow process. A reduction of the time necessary to achieve satisfactory sugar yields will therefore have a large impact on the process economy.

Several factors are of importance for the sugar yield in the enzymic hydrolysis. Particularly important are the composition of the enzyme mixture and the ratios between enzyme and substrate, the inhibition of the enzymes by degradation products, the adsorption of enzymes onto the substrate and the possibility of reutilizing both enzymes in solution and enzymes adsorbed onto the substrate.

As mentioned earlier, commercial techniques are available for the bioconversion of hexoses to ethanol. A similar technique for the bioconversion of pentoses is still lacking. However, important progress is being made in this field.

The interest in developing commercial processes where lignocellulosic materials are the basis for production of ethanol will always be strongly dependent upon the oil price and the availability of oil, even though the environmental aspects on fuel most likely will be more important in the future. It is our strong belief that sooner or later a process for the conversion of lignocellulosics to ethanol will be in demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reczey K, Laszlo E and Hollo J (1986) Starch. 38, 306

    Google Scholar 

  2. Mes-Hartree M and Saddler JN (1983) Biotechnol. Lett., 5(8), 531

    Article  Google Scholar 

  3. Wilke CR, Yang RD, Sciamanna AF and Freitas RP (1981) Biotechnol. Bioeng., 23, 163

    Article  Google Scholar 

  4. Rao M, Seeta R and Deshpande V (1983) Biotechnol. Bioeng., 25, 1863

    Article  Google Scholar 

  5. Vallander L and Eriksson KE (1985) Biotechnol. Bioeng., 27, 650

    Article  Google Scholar 

  6. Saddler JN, Brownell HH, Clermonl LP and Le N (1982) Biotechnol. Bioeng., 24, 1389

    Article  Google Scholar 

  7. Bonn G, Hörmeyer HF, and Bobleter O (1987) Wood Sci. Technol. 21, 179

    Article  Google Scholar 

  8. Dekker RHF and Wallis AFA (1983) Biotechnol. Bioeng., 25, 3027

    Article  Google Scholar 

  9. Rolz C, de Arriola MC, Valladares J and de Cabrera S (1987) Process Biochemistry, 22, 17

    Google Scholar 

  10. Clark TA and Mackie KL (1987) J. Wood Tech., 7 (3), 373

    Google Scholar 

  11. Brownell HH, Yu EKC and Saddler JN (1986) Biotechnol. Bioeng., 28, 792

    Article  Google Scholar 

  12. Brownell HH and Saddler JN (1987) Biotechnol. Bioeng., 29, 228

    Article  Google Scholar 

  13. Mamers H and Menz DNJ (1984) Appita 37(8), 644

    Google Scholar 

  14. Morjanoff PJ and Gray PP (1987) Biotechnol. Bioeng., 29, 733

    Article  Google Scholar 

  15. Puls J, Poutanen K, Körner HU and Viikari L (1985) Appl. Microbiol. Biotechnol., 22, 416

    Article  Google Scholar 

  16. Vallander L and Eriksson KE (1989) Biotechnol. Bioeng., under review

    Google Scholar 

  17. Dale BE and Moreira MJ, Paper presented at the 4th Symposium on Biotechnology in Energy Production and Conservation, May 11–14, 1982, Gatlinburg, Tennessee

    Google Scholar 

  18. Grethlein HE (1985) Biotechnology, 3, 155

    Google Scholar 

  19. Grous WR, Converse AO and Grethlein HE (1986) Enzyme Microb. Technol., 8, 274

    Article  Google Scholar 

  20. Wong KKY, Deverell KF, Mackie KL, Clark TA and Donaldson LA (1988) Biotechnol. Bioeng., 31, 447

    Article  Google Scholar 

  21. Chen HC and Grethlein HE (1988) Biotechnol. Lett., 10(12), 913

    Article  Google Scholar 

  22. Rabinovitch ML, Nguyen Van Viet, Klyosov AA and Freitas RP (1981) Biotechnol. Bioeng., 23, 163

    Article  Google Scholar 

  23. Ford CW (1983) Aust. J. Agric. Res., 34, 241

    Article  Google Scholar 

  24. Cunningham RL, Detroy RL, Bagby MO and Baker FL (1981) Transactions of the Illinois state academy of science, 74(3–4), 67

    Google Scholar 

  25. Lee SB, Shin HS, Ryu DDY and Mandels M (1982) Biotechnol. Bioeng., 24, 2137

    Article  Google Scholar 

  26. Eriksson KE, Hollmark BH and Pettersson A (1969) Svensk Papperstidn. 72, 551

    Google Scholar 

  27. Eriksson KE and Wood TM (1985) Biodegradation of Cellulose. In “Biosynthesis and Biodegradation of Wood Components” (T. Higuchi, Ed) pp 469–503. Academic Press, London

    Google Scholar 

  28. Knowles J, Teeri T, Lehtovaara P, Pentila M and Saloheimo M (1988) The use of gene technology to investigate fungal cellulolytic enzymes. In “Biochemistry and Genetics of Cellulose Degradation” (Aubert JP, Beguin P and Millet J, Eds) pp 153–169. Academic Press, London

    Google Scholar 

  29. Teeri TT, Lehtovaara P, Kauppinen S and Salovuori I (1987) Gene 51, 43

    Article  PubMed  Google Scholar 

  30. Poutanen K (1988) Diss. Techn. Res. Centre, Finland. Publication 47

    Google Scholar 

  31. Dekker RFH (1985) Biodegradation of the hemicelluloses. In “Biosynthesis and Biodegradation of Wood Components” (T. Higuchi, Ed) pp 505–533. Academic Press, London

    Google Scholar 

  32. Reese ET, Shibata Y (1965) Can J Microbiol 11, 167

    PubMed  Google Scholar 

  33. Tan LUL, Yu EKC, Mayers P and Saddler JN (1987) Appl. Microbiol., 26, 21

    Google Scholar 

  34. Dekker RFH, Karageorge H and Wallis AFA (1987) Biocatalysis, 1, 47

    Google Scholar 

  35. Perez J, Wilke CR and Blanch HW. Paper presented at the second chemical congress of the north American continent, Las Vegas, Nevada (1982)

    Google Scholar 

  36. Esterbauer H, Hayn M, Jungschaffer G, Taufratzhofer E and Schurz J (1983) J. Wood Chem. Technology, 3(3), 261

    Google Scholar 

  37. Ghosh P, Pamment NB and Martin WRB (1982) Enzyme Microb. Technol., 4, 425

    Article  Google Scholar 

  38. Sternberg D, Vijayakumar P and Reese ET (1977) Can. J. Microbiol. 23, 139

    PubMed  Google Scholar 

  39. Herr D (1980) Biotechnol. Bioeng., 22, 1601

    Article  Google Scholar 

  40. Khan AW, Chin A and Baird S (1985) Biotechnol. Lett., 7(6), 447

    Article  Google Scholar 

  41. Fadda MB, Dessi MR, Maurici R, Rinaldi A and Satta G (1984) Appl. Microbiol. Biotechnol., 19, 306

    Article  Google Scholar 

  42. Vallander L and Eriksson KE (1987) Enzyme Microb. Technol., 9, 714

    Article  Google Scholar 

  43. Klyosov AA (1986) Appl. Biochem. Biotechnol. 12, 249

    Google Scholar 

  44. Stutzenberger F (1987) Lett. Appl. Microbiol. 5, 1

    Google Scholar 

  45. Ghose TK and Bisaria VS (1979) Biotechnol. Bioeng., 21, 131

    Article  PubMed  Google Scholar 

  46. Beldman G, Voragen AGJ, Rombouts FM, Searle-van Leeuwen MF and Pilnik W (1987) Biotechnol. Bioeng., 30, 251

    Article  Google Scholar 

  47. Sutcliffe R and Saddler JN (1986) Biotechnol. Bioeng. Symp., 17, 749

    Google Scholar 

  48. Chernoglazov VM, Ermolova OV and Klyosov AA (1988) Enzyme Microb. Technol., 10, 503

    Article  Google Scholar 

  49. Deshpande MV and Eriksson KE (1984) Enzyme Microb. Technol., 6, 338

    Article  Google Scholar 

  50. Kyriacou A, Neufeld RJ and MacKenzie CR (1989) Biotechnol. Bioeng., 33, 631

    Article  Google Scholar 

  51. Ryu DDY, Kim C and Mandels M (1984) Biotechnol. Bioeng., 26, 488

    Article  Google Scholar 

  52. Castanon M and Wilke CR (1980) Biotechnol. Bioeng., 22, 1037

    Article  Google Scholar 

  53. Reese ET and Mandels M (1980) Biotechnol. Bioeng., 22, 323

    Article  PubMed  Google Scholar 

  54. Mes-Hartree M, Hogan CM and Saddler JN (1987) Biotechnol. Bioeng., 30, 558

    Article  Google Scholar 

  55. Clesceri LS, Sinitsyn AP, Saunders AM and Bungay HR (1985) Appl. Biochem. Biotechn., 11, 433

    Google Scholar 

  56. Toyama N, Ogawa K and Toyama H (1983) Bull Fac. Agr. Miyazaki Uni., 30, 57

    Google Scholar 

  57. Ajisaka K, Nishida H and Fujimoto H (1987) Biotechnol. Lett. 9(4), 243

    Article  Google Scholar 

  58. Prakash S, Suyama K, Itoh T and Adachi S (1987) Biotechnol. Lett., 9(4), 249

    Article  Google Scholar 

  59. Mozaffar Z, Nakanishi K and Matsuno R (1988) Biotechnol. Lett., 10(11), 805

    Article  Google Scholar 

  60. Gusakov AV, Sinitsyn AP, Goldsteins GH and Klyosov AA (1984) Enzyme Microb. Technol., 6, 275

    Article  Google Scholar 

  61. Streamer M, Eriksson KE and Pettersson B (1975) Eur. J. Biochem., 59, 607

    Article  PubMed  Google Scholar 

  62. Cantarella M, Gallifuoco A, Scardi V and Alfani F (1984) Annals N.Y. Acad. Sci., 434, 39

    Google Scholar 

  63. Dekker RFH (1986) Biotechnol. Bioeng., 28, 1438

    Article  Google Scholar 

  64. Gianfreda L, Livolsi AM, Scarfi MR and Greco Jr G (1982) Enzyme Microb. Technol., 4, 322

    Article  Google Scholar 

  65. David C and Thiry P (1981) Eur. Polym. J., 17, 957

    Article  Google Scholar 

  66. Kim MH, Lee SB, Ryu DDY and Reese ET (1982) Enzyme Microb. Technol., 4, 99

    Article  Google Scholar 

  67. Dale BE and White DH (1983) Enzyme Microb. Technol., 5, 227

    Article  Google Scholar 

  68. Castanon M and Wilke CR (1981) Biotechnol. Bioeng., 23, 1365

    Article  Google Scholar 

  69. Gusakov AV, Sinitsyn AP and Klyosov AA (1987) Biotechnol. Bioeng., 29, 906

    Article  Google Scholar 

  70. Sundstrom DW, Klei HE, Coughlin RW, Biederman GJ and Brouwer CA (1981) Biotechnol. Bioeng., 23, 473

    Article  Google Scholar 

  71. Venardos D, Klei HE and Sundstrom DW (1980) Enzyme Microb. Technol., 2, 112

    Article  Google Scholar 

  72. Woodward J and Wohlpart DL (1982) J. Chem. Tech. Biotechnol., 32, 547

    Google Scholar 

  73. Mandels M and Reese ET (1965) Ann. Rev. Phytopathol., 3, 85

    Article  Google Scholar 

  74. Mes-Hartree M and Saddler JN (1983) Biotechnol. Lett., 5(8), 531

    Article  Google Scholar 

  75. Martin SA and Akin DE (1988) Appl. Environ. Microbiol., 54, 3019

    PubMed  Google Scholar 

  76. Dekker RFH (1988) Appl. Environ. Biotechnol., 29, 593

    Google Scholar 

  77. Pfeifer PA, Bonn G and Bobleter O (1984) Biotechnol. Lett., 6(8), 541

    Article  Google Scholar 

  78. du Preez JC, Bosch M and Prior BA (1986) Appl. Microbiol. Biotechnol., 23, 228

    Article  Google Scholar 

  79. Skoog K and Hahn-Hägerdahl B (1988) Enzyme Microb. Technol., 10, 66

    Article  Google Scholar 

  80. Tolan JS and Finn RK (1987) Appl. Environ. Microbiol., 53(9), 2033

    Google Scholar 

  81. Tolan JS and Finn RK (1987) Appl. Environ. Microbiol., 53(9), 2039

    Google Scholar 

  82. Chung IS and Lee YY (1986) Enzyme Microb. Technol., 8, 503

    Article  Google Scholar 

  83. Delgenes JP, Moletta R and Navarro JM (1986) Biotechnol. Lett., 8(12), 897

    Article  Google Scholar 

  84. du Preez JC, van Driessel B and Prior BA (1988) Biotechnol. Lett., 12, 901

    Article  Google Scholar 

  85. Ligthelm ME, Prior BA and du Preez JC (1988) Biotechnol. Lett., 10(3), 207

    Article  Google Scholar 

  86. Ligthelm ME, Prior BA and du Preez JC (1989) Biotechnol. Bioeng., 32, 839

    Article  Google Scholar 

  87. Wayman M and Parekh S (1985) Biotechnol. Lett., 7(12), 909

    Article  Google Scholar 

  88. Novak M, Strehaiano P, Moreno M and Goma G (1981) Biotechnol. Bioeng. 23, 201

    Article  Google Scholar 

  89. Ando S, Arai I, Kiyoto K and Hanai S (1986) J. Ferment. TechnoL, 64(6), 567

    Article  Google Scholar 

  90. Nishikawa NK, Sutcliffe R and Saddler JN (1988) Appl. Microb. Technol., 27, 549

    Google Scholar 

  91. Tran AV and Chambers RP (1985) Biotechnol. Lett., 7(11), 841

    Article  Google Scholar 

  92. Dekker RFH (1986) Biotechnol. Bioeng., 28, 605

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Vallander, L., Eriksson, K.E.L. (1990). Production of ethanol from lignocellulosic materials: State of the art. In: Bioprocesses and Applied Enzymology. Advances in Biochemical Engineering/Biotechnology, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0000731

Download citation

  • DOI: https://doi.org/10.1007/BFb0000731

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52793-0

  • Online ISBN: 978-3-540-47150-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics