Skip to main content

Modelling the growth of filamentous fungi

  • Chapter
  • First Online:
Modern Biochemical Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 46))

Abstract

Despite the considerable industrial importance of filamentous fungi there have been very few attempts to model the complex growth process of these microorganisms. With a new generation of high performance, computerized bioreactors and new analytical techniques it is possible to obtain the necessary experimental data for setting up reliable structured models describing the growth process of filamentous fungi. It is therefore interesting to review the mathematical models described previously in the literature and the experimental data on which these models are built. Only structured models are considered due to the complex metabolism of filamentous fungi and to the natural cellular structuring of the biomass, i.e. the biomass can be divided into different cell types.

In order to set up good structured models it is strictly necessary to have a detailed knowledge of the mechanisms underlying the growth process. This involves both biochemical insight and understanding of the interactions between different macromolecules and cytological organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

b:

breakage function (hyphal elements formed per m3 per h)

d:

hypha diameter (m)

D:

dilution rate in the bioreactor (h−1)

eL :

column vector of dimension L with all elements being 1

k:

rate constant (h−1)

K:

saturation constant (kg per kg DW)

Ihgu :

hyphal growth unit length (m per tip)

m:

mass of hyphal element (kg)

M:

diagonal matrix containing the specific growth rates of the morphological forms (h−1)

n:

average number of tips in a hyphal element

r:

specific rate vector for intracellular reactions (h−1)

r tip :

tip extension rate (kg DW per tip per h)

rx :

biomass formation rate (kg DW m−3 h−1)

rv :

specific rate of increase in the wall area (m2 h−1)

rvsc :

rate of displacement of the VSC (m h−1)

R:

pellet radius (m)

s:

extracellular substrate concentration (kg m−3)

S:

intracellular substrate concentration (kg per kg DW)

u:

diagonal matrix containing the rate of metamorphosis reactions (h−1)

Vhgu :

hyphal growth unit volume (m3 per tip)

w:

water content in the cells (kg per kg biomass)

x:

biomass concentration (kg DW m−3)

xhgu :

hyphal growth unit mass (kg DW per tip)

X:

intracellular concentration vector (kg per kg DW)

Yij :

stoichiometric coefficients (mole j (mole i)−1)

zsk :

distance between apex and position of the VSC

Z:

fractional concentration vector of morphological forms (kg per kg DW)

α:

stoichiometric coefficients for the substrate

δ:

stoichiometric coefficients in the metamorphosis reactions

Δ:

matrix containing the stoichiometric coefficients δ

Γ:

matrix containing the stoichiometric coefficients in the intracellular reactions

É›:

number of hyphal elements

μ:

specific growth rate (h−1)

Ï•:

branching frequency (tips formed per h)

ϱ:

cell density (kg m−3)

References

  1. Nüesch J, Heim J, Treichler H-J (1987) Ann Rev Microbiol 41: 51

    Google Scholar 

  2. Schügerl K (1981) Adv Biochem Eng 19: 71

    Google Scholar 

  3. Moser A (1988) Bioprocess technology, Springer, Vienna New York

    Google Scholar 

  4. Schügerl K (1991) Bioreaction engineering. Characteristic features of bioreactors, vol 2, John Wiley, Chichester

    Google Scholar 

  5. Nielsen J, Villadsen J (1992) Chem Eng Sci, in press

    Google Scholar 

  6. Fredrickson AG (1976) Biotechnol Bioeng. 18: 1481

    Google Scholar 

  7. Roels JA (1982) Energetics and kinetics in biotechnology, Elsevier, Amsterdam

    Google Scholar 

  8. Nielsen J, Nikolajsen K, Villadsen J (1991) Biotechnol Bioeng 38: 1

    Google Scholar 

  9. Tsuchiya HM, Fredrickson AG, Aris R (1966) Adv Chem Eng 6: 125

    Google Scholar 

  10. Fredrickson AG, Ramkrishna D, Tsuchiya HM (1967) Math Biosci 1: 327

    Google Scholar 

  11. Måløe O, Kjeldgaard No (1966) Control of macromolecular synthesis, WA Benjamin, New York

    Google Scholar 

  12. Cooper S (1991) Bacterial Growth and Division, Academic, San Diego

    Google Scholar 

  13. Blumenthal HJ (1965) Glycolysis. In: Ainsworth GC, Sussman AS (eds) The fungi, vol 1, Academic, New York, p 229

    Google Scholar 

  14. Berry DR (1975) The environmental control of the physiology of filamentous fungi. In: Smith JE, Berry DR (eds) The Filamentous fungi, vol 1, Edward Arnold, London, p 16

    Google Scholar 

  15. Shu P, Funk A, Neish AC (1954) Can J Biochem Physiol 32: 68

    Google Scholar 

  16. Carter BLA, Bull AT (1969) Biotechnol Bioeng 11: 785

    Google Scholar 

  17. Lewis KF, Blumenthal HJ, Wenner CE, Weinhouse S (1954) Federation Proc. 13:252

    Google Scholar 

  18. Heath EC, Koffler H (1956) J Bacteriol 71: 174

    Google Scholar 

  19. Wang CH, Stern I, Gilmour CM, Klungsoyr S, Reed DJ, Bialy JJ, Christensen BE, Cheldelin VH (1958) J Bacteriol 76: 207

    Google Scholar 

  20. Reed DJ, Wang CH (1959) Can J Microbiol 5: 59

    Google Scholar 

  21. Bull AT, Trinci APJ (1977) The Physiology and Metabolic Control of Fungal Growth. In: Rose AH, Tempest DW (ed) Adv Microbial Physiol 15: 2

    Google Scholar 

  22. Alexander MA, Jeffries TW (1990) Enzyme Microb Technol 12: 2

    Google Scholar 

  23. Niederpruem DJ (1965) Tricarboxylic acid cycle. In: Ainsworth GC, Sussman AS (eds) The fungi, vol 1, Academic, New York, p 269

    Google Scholar 

  24. Lindenmayer A (1965) Terminal oxidation and electron transport. In: Ainsworth GC, Sussman AS (eds) The fungi, vol 1, Academic, New York, p 301

    Google Scholar 

  25. Carter BLA, Bull AT, Pirt SJ, Rowley BI (1971) J Bacteriol 108: 309

    Google Scholar 

  26. Pirt SJ, Callow DS (1960) J Appl Bacteriol 23: 87

    Google Scholar 

  27. Pirt SJ, Righelato (1967) Appl Microbiol 15: 1284

    Google Scholar 

  28. Ryu DDY, Hospodka J (1980) Biotechnol. Bioeng. 22: 289

    Google Scholar 

  29. Mason HRS, Righelato RC (1976) J Appl Chem Biotechnol 26: 145

    Google Scholar 

  30. Sonnleitner B, Käppeli O (1986) Biotechnol Bioeng 28: 927

    Google Scholar 

  31. Hackette SL, Skye GE, Burton C, Segel IH (1970) J Biol Chem 245: 4241

    Google Scholar 

  32. Pateman JA, Kinghorn JR (1976) Nitrogen Metabolism. In Smith JE, Berry DR (ed) The Filamentous Fungi, vol 2, Edward Arnold, London: 159

    Google Scholar 

  33. Roos W, Luckner M (1984) J Gen Microbiol 130: 1007

    Google Scholar 

  34. Hunter DR, Segel IH (1971) Arch Biochem Biophys 144: 168

    Google Scholar 

  35. Hunter DR, Segel IH (1973) J Bacteriol 113: 1184

    Google Scholar 

  36. Casselton PJ (1976) Anaplerotic pathways. In: Smith JE, Berry DR (ed) The Filamentous Fungi, vol 2, Edward Arnold, London: 121

    Google Scholar 

  37. Steinmeyer DE, Shuler ML (1989) Chem Eng Sci 44: 2017

    Google Scholar 

  38. Nielsen J, Nikolajsen K, Villadsen J (1991) Biotechnol Bioeng 38: 11

    Google Scholar 

  39. Alberghina L, Sturani E, Costantini MG, Martegani E, Zippel R (1979) In: Burnett JH, Trinci APJ (ed) Fungal walls and hyphal growth, Cambridge University Press, Cambridge: 295

    Google Scholar 

  40. Sturani E, Magnani F, Alberghina FAM (1973) Biochim Biophys Acta 319: 153

    Google Scholar 

  41. Bushell ME, Bull AT (1976) J Appl Chem Biotechnol 26: 339

    Google Scholar 

  42. Ingraham JL, Maaløe O, Neidhardt FC (1983) Growth of the bacterial cell, Sinnauer Associates, Sunderland

    Google Scholar 

  43. Righelato RC (1975) Growth kinetics of mycelial fungi. In: Smith JE, Berry DR (ed) The filamentous fungi, vol 1, Edward Arnold, London: 79

    Google Scholar 

  44. Righelato RC, Trinci APJ, Pirt SJ and Peat A (1968) J Gen Microbiol 50: 399

    Google Scholar 

  45. Smith JE (1975) The structure and development of filamentous fungi. In: Smith JE, Berry DR (ed) The filamentous fungi, vol 1, Edward Arnold, London: 1

    Google Scholar 

  46. Bartnicki-Garcia S (1990) Role of vesicles in apical growth and a new mathematical model of hyphal morphogenesis. In: Heath IB (ed) Tip growth in plant and fungal cells, Academic, San Diego: 211

    Google Scholar 

  47. Smith JE (1978) Asexual sporulation in filamentous fungi. In: Smith JE, Berry DR (eds) The filamentous fungi, vol 3, Edward Arnold, London: 214

    Google Scholar 

  48. Steele GC, Trinci APJ (1975) J Gen Microbiol 91: 362

    Google Scholar 

  49. Fiddy C, Trinci APJ (1976) J Gen Microbiol 97: 169

    Google Scholar 

  50. Trinci APJ (1978) The duplication cycle and vegetative development in moulds. In: Smith JE, Berry DR (ed) The filamentous fungi, vol 3, Edward Arnold, London: 132

    Google Scholar 

  51. Trinci APJ, Collinge AJ (1975) J Gen Microbiol 91: 355

    Google Scholar 

  52. Bartnicki-Garcia S (1973) Symp Soc Gen Microbiol 23: 245

    Google Scholar 

  53. Prosser JI (1979) Mathematical modelling of mycelial growth. In: Burnett JH, Trinci APJ (ed) Fungal walls and hyphal growth, Cambridge University Press, Cambridge: 359

    Google Scholar 

  54. Grove SN (1978) The cytology of hyphal tip growth. In Smith JE, Berry DR (ed) The filamentous fungi, vol 3, Edward Arnold, London: 28

    Google Scholar 

  55. Trinci APJ (1971) J Gen Microbiol 67: 325

    Google Scholar 

  56. Trinci APJ (1979) The duplication cycle and branching in fungi. In Burnett JH, Trinci APJ (ed) Fungal walls and hyphal growth, Cambridge University Press, Cambridge: 319

    Google Scholar 

  57. Trinci APJ (1984) Regulation of hyphal branching and hyphal orientation. In Jennings DH, Rayner ADM (ed) The ecology and physiology of the fungal mycelium, Cambridge University Press, Cambridge: 23

    Google Scholar 

  58. Robson GD, Wiebe MG, Trinci APJ (1991) J Gen Microbiol 137 963

    Google Scholar 

  59. Robinson PM, Smith JM (1979) Trans Br Mycol Soc 72: 39

    Google Scholar 

  60. Caldwell IY, Trinci APJ (1973) Arch Mikrobiol 88: 1

    Google Scholar 

  61. Katz D, Goldstein D, Rosenberger RF (1972) J Bacteriol 109: 1097

    Google Scholar 

  62. Morrison KB, Righelato RC (1974) J Gen Microbiol 81: 517

    Google Scholar 

  63. Kretschmer S (1985) J Basic Microbiol 25: 569

    Google Scholar 

  64. Riesenberg D, Bergter F (1979) Z Allgemeine Mikrobiol 19: 415

    Google Scholar 

  65. Metz B, Bruijn EW de, Suijdam JC van (1981) Biotechnol Bioeng 23: 149

    Google Scholar 

  66. Wiebe MG, Trinci APJ (1991) Biotechnol Bioeng 38: 75

    Google Scholar 

  67. Bajpai RK, Reuss M (1980) J Chem Tech Biotechnol 30: 332

    Google Scholar 

  68. Bajpai RK, Reuss M (1981) Biotechnol Bioeng 23: 717

    Google Scholar 

  69. Megee RD, Kinoshita S, Fredrickson AG, Tsuchiya HM (1970) Biotechnol Bioeng 12: 771

    Google Scholar 

  70. Kristiansen B, Sinclair CG (1979) Biotechnol Bioeng 21: 297

    Google Scholar 

  71. Nestaas E, Wang DIC (1983) Biotechnol Bioeng 25: 781

    Google Scholar 

  72. Prosser JI, Trinci APJ (1979) J Gen Microbiol 111: 153

    Google Scholar 

  73. Aynsley M, Ward AC, Wright AR (1990) Biotechnol Bioeng 35: 820

    Google Scholar 

  74. Metz B, Kossen NWF, Suijdam JC van (1979) Adv Biochem Eng 11: 103

    Google Scholar 

  75. Ramkrishna D (1985) Rev Chem Eng 3: 49

    Google Scholar 

  76. Ramkrishna D (1979) Adv Biochem Eng 11: 1

    Google Scholar 

  77. Drew SW, Winstanley DJ, Demain AL (1976) Appl Environ Microbiol 31: 143

    Google Scholar 

  78. Suijdam JC van, Metz B (1981) Biotechnol Bioeng 23: 111

    Google Scholar 

  79. Miles EA, Trinci APJ (1983) Trans Br Mycol Soc 81: 193

    Google Scholar 

  80. Metz B, Kossen NWF (1977) Biotechnol Bioeng 19: 781

    Google Scholar 

  81. Pirt SJ, Callow DS (1959) Nature 4683: 307

    Google Scholar 

  82. Trinci APJ (1970) Arch Mikrobiol 73: 353

    Google Scholar 

  83. Suijdam JC van, Hols H, Kossen NWF (1982) Biotechnol Bioeng. 24: 177

    Google Scholar 

  84. Tagushi H (1971) Adv Biochem Eng. 1: 1

    Google Scholar 

  85. Suijdam JC van, Metz B (1981) J Ferment Technol 59: 329

    Google Scholar 

  86. Matsumura M, Imanaka T, Yoshida T, Taguchi H (1981) J Ferment Technol 59: 115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Nielsen, J. (1992). Modelling the growth of filamentous fungi. In: Modern Biochemical Engineering. Advances in Biochemical Engineering/Biotechnology, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0000711

Download citation

  • DOI: https://doi.org/10.1007/BFb0000711

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55276-5

  • Online ISBN: 978-3-540-47005-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics