Skip to main content

Use and engineering aspects of immobilized cells in biotechnology

  • Chapter
  • First Online:
Modern Biochemical Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 46))

Abstract

A short review of the research in the past two years (1990–1991) on immobilized whole cells, such as microbial, plant, and animal cells, is presented including a discussion from an engineering point of view. Recent works concerning the intraparticle mass transfer effect on immobilized microbial cells by the authors and their co-workers are also introduced. Finally, future prospects of the immobilized cell system will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Dep :

effective diffusivity of ethanol inside the gel particles [m2 h−1]

Des :

effective diffusivity of glucose inside the gel particles [m2 h−1]

D0p :

diffusivity of ethanol in water [m2 h−1]

D0s :

diffusivity of glucose in water [m2 h−1]

Ip(P):

product inhibition function for cell growth [-]

I′p(P):

product inhibition function for ethanol production [-]

Is(S):

substrate inhibition function for cell growth [-]

I′s(S):

substrate inhibition function for ethanol production [-]

Ki :

substrate inhibition constant for ethanol production [g l−1]

Kp :

product inhibition constant for cell growth [g l−1]

K′p :

product inhibition constant for ethanol production [g l−1]

Ks :

substrate limitation constant for cell growth [g l−1]

K′s :

substrate limitation constant for ethanol production [g l−1]

k1 :

constant in the diffusivity relation [-]

k2 :

constant in the diffusivity relation [l g−1]

P:

product (ethanol) concentration [g l−1]

Pmax :

maximum product concentration for cell growth [g l−1]

P′max :

maximum product concentration for ethanol production [g l−1]

Pi :

transition concentration for product inhibition for cell growth [g l−1]

P′i :

transition concentration for product inhibition for ethanol production [g l−1]

r:

distance from the center of particles [m]

rp :

specific production rate [g EtOH per g dry cell per h]

rp0 :

specific production rate without product inhibition [g EtOH per g dry cell per h]

rpm :

maximum specific production rate [g EtOH per g dry cell per h]

rs :

production rate per unit surface area of cell-immobilizing particles [g EtOH per mm2 per h]

R:

radius of immobilized particle [m]

S:

substrate (glucose) concentration [g l−1]

Smax :

maximum substrate concentration [g l−1]

Si :

threshold concentration for substrate inhibition [g l−1]

S0 :

substrate concentration in the bulk solution [g l−1]

t:

time [h]

X:

cell concentration [g dry cell per l]

X0 :

initial cell concentration [g dry cell per l]

Yp/s :

yield of ethanol from glucose [g EtOH per g glucose]

μ:

specific growth rate [h−1]

μ0 :

specific growth rate without product inhibition [h−1]

References

  1. Kennedy JF, Cabral JMS (1983) Appl Biochem Bioeng 4: 189

    Google Scholar 

  2. Corcoran E (1986) Top Enzyme Ferment Biotechnol 10: 12

    Google Scholar 

  3. Chibata I, Tosa T, Sato T (1986) J Mol Catal 37: 1

    Google Scholar 

  4. Scott CD (1987) Enzyme Microb Technol 9: 66

    Google Scholar 

  5. Furusaki S (1988) J Chem Eng Japan 21: 219

    Google Scholar 

  6. Klein J, Kressdorf B (1989) Angew Makromol Chem 166–167: 293

    Google Scholar 

  7. Tanaka A, Nakajima H (1990) Adv Biochem Eng/Biotechnol, 42: 97

    Google Scholar 

  8. Woodward J (ed) (1985) Immobilized cells and enzymes. IRL Press, Oxford (Practical Approach Series)

    Google Scholar 

  9. Moo-Young M (ed) (1988) Bioreactor immobilized enzymes and cells. Elsevier Applied Science, London

    Google Scholar 

  10. Mosbach K (ed) (1987–8) Methods in Enzymol 135–137 (Immobilized Enzymes and Cells Pt B, C, D)

    Google Scholar 

  11. Bravo P, Gonzalez G (1991) J Chem Technol Biotechnol 52: 127

    Google Scholar 

  12. Gil GH, Jones WJ, Tornabene TG (1991) Enzyme Microb Technol 13: 390

    Google Scholar 

  13. Ramakrishna SV, Prema P, Sai PST (1991) Bioprocess Eng 6: 117

    Google Scholar 

  14. Chen C, Dale MC, Okos MR (1990) Biotechnol Bioeng 36: 975

    Google Scholar 

  15. Joung JJ, Royer GP (1990) Ann NY Acad Sci 589: 271

    Google Scholar 

  16. Amin G, Doelle HW (1990) Enzyme Microbiol Technol 12: 443

    Google Scholar 

  17. Galazzo JL, Bailey JE (1990) Biotechnol Bioeng 36: 417

    Google Scholar 

  18. Hilge-Rotmann B, Rehm HJ (1990) Appl Microbiol Biotechnol 33: 54

    Google Scholar 

  19. Dale MC, Chen C, Okos MR (1990) Biotechnol Bioeng 36: 983

    Google Scholar 

  20. Chen C, Dale MC, Okos MR (1990) Biotechnol Bioeng 36: 993

    Google Scholar 

  21. Seki M, Furusaki S, Shigematsu K (1990) Ann NY Acad Sci 613: 290

    Google Scholar 

  22. Monbouquette HG, Sayles GD, Ollis DF (1990) Biotechnol Bioeng 35: 609

    Google Scholar 

  23. Hannoun BJM, Stephanopoulos G (1990) Biotechnol Prog 6: 341

    Google Scholar 

  24. Hannoun BJM, Stephanopoulos G (1990) Biotechnol Prog 6: 349

    Google Scholar 

  25. Bringi V, Dale BE (1990) Biotechnol Prog 6: 205

    Google Scholar 

  26. Hilge-Rotmann B, Rehm HJ (1991) Appl Microbiol Biotechnol 34: 502

    Google Scholar 

  27. Hamada T, Sugishita M, Motai H (1990) Appl Microbiol Biotechnol 33: 624

    Google Scholar 

  28. Groot WJ, den Reyer MCH, Baart de la Faille T, van der Lans RGJM, Luyben KChAM (1991) Chem J (Lausanne) 46: B1

    Google Scholar 

  29. Park CH, Okos MR, Wankat PC (1990) Biotechnol Bioeng 36: 207

    Google Scholar 

  30. Friedl A, Qureshi N, Maddox IS (1991) Biotechnol Bioeng 38: 518

    Google Scholar 

  31. Hecker D, Bisping B, Rehm HJ (1990) Appl Microbiol Biotechnol 32: 627

    Google Scholar 

  32. Bisping B, Baumann U, Rehm HJ (1990) Appl Microbiol Biotechnol 32: 380

    Google Scholar 

  33. Hoetmann U, Bisping B, Rehm HJ (1991) Appl Microbiol Biotechnol 35: 258

    Google Scholar 

  34. Steinmeyer DE, Shuler ML (1990) Biotechnol Prog 6: 286

    Google Scholar 

  35. Melzoch K, Rychtera M, Markvichov NS, Pospichalova V, Basarova G, Manakov MN (1991) Appl Microbiol Bioeng 34: 469

    Google Scholar 

  36. Godia F, Adler HI, Scott CD, Davison BH (1990) Biotechnol Prog 6: 210

    Google Scholar 

  37. Krischke W, Schroeder M, Troesch W (1991) Appl Microbiol Biotechnol 34: 573

    Google Scholar 

  38. Roukas T, Kotzekidou P (1991) Enzyme Microb Technol 13: 33

    Google Scholar 

  39. Audet P, Paquin C, Lacroix C (1990) Appl Microbiol Biotechnol 32: 662

    Google Scholar 

  40. Yabannavar VM, Wang DIC (1991) Biotechnol Bioeng 37: 544

    Google Scholar 

  41. Hoshino K, Taniguchi M, Marumoto H, Shimizu K, Fujii M (1991) Agric Biol Chem 55: 479

    Google Scholar 

  42. Dinarieva T, Netrusov A (1991) Biotechnol Prog 7: 234

    Google Scholar 

  43. Crespo JPSG, Almeida JS, Moura MJ, Carrondo MJT (1990) Biotechnol Bioeng 36: 705

    Google Scholar 

  44. Kautola H, Rymowicz W, Linko YY, Linko P (1991) Appl Microbiol Biotechnol 35:447

    Google Scholar 

  45. O'Brien DJ, Panzer CC, Eisele WP (1990) Biotechnol Prog 6: 237

    Google Scholar 

  46. Sun Y, Furusaki S (1991) J Ferment Bioeng 69: 102

    Google Scholar 

  47. Sun Y, Furusaki S (1991) J Ferment Bioeng 70: 196

    Google Scholar 

  48. Lacroix C, Paquin C, Arnaud JP (1990) Appl Microbiol Biotechnol 32: 403

    Google Scholar 

  49. Constantinides A, Mehta N (1991) Biotechnol Bioeng 37: 1010

    Google Scholar 

  50. Keshavarz T, Eglin R, Walker E, Bucke C, Holt G, Bull AT, Lilly MD (1990) Biotechnol Bioeng 36: 763

    Google Scholar 

  51. Chun GT, Agathos SN (1991) Biotechnol Bioeng 37: 256

    Google Scholar 

  52. Trueck HU, Chmiel H, Hammes WP, Troesch W (1990) Appl Microbiol Biotechnol 34: 1

    Google Scholar 

  53. Trueck HW, Chmiel H, Hammes WP, Troesch W (1990) Appl Microbiol Biotechnol 33: 139

    Google Scholar 

  54. Sachse H, Kude J, Kerns G, Berger R (1990) Acta Biotechnol 10: 523

    Google Scholar 

  55. Gallo Federici R, Federici F, Petruccioli M (1990) Biotechnol Lett 12: 661

    Google Scholar 

  56. Federici F, Petruccioli M, Miller MW (1990) Appl Microbiol Biotechnol 33: 407

    Google Scholar 

  57. Fiedurek J, Lobarzewski J (1990) Starch 42: 358

    Google Scholar 

  58. Kuek C (1991) Appl Microbiol Biotechnol 35: 466

    Google Scholar 

  59. Klingeberg M, Vorlop KD, Antranikian G (1990) Appl Microbiol Biotechnol 33:494

    Google Scholar 

  60. Johri BN, Alurralde JD, Klein J (1990) Appl Microbiol Biotechnol 33: 367

    Google Scholar 

  61. Fortin C, Vuillemard JC (1990) Biotechnol Lett 12: 913

    Google Scholar 

  62. El-Aassar SA, El-Badry HM, Abdel-Fattah AF (1990) Appl Microbiol Biotechnol 33:26

    Google Scholar 

  63. Kily T, Tiedtke A (1991) Appl Microbiol Biotechnol 35: 14

    Google Scholar 

  64. Cornwell KL, Tinland-Butez MF, Tardone PJ, Cabasso I, Hammel KE (1990) Enzyme Microb Technol 12: 916

    Google Scholar 

  65. Chen AHC, Dosoretz CG, Grethlein HE (1991) Enzyme Microb Technol 13: 404

    Google Scholar 

  66. Kirkpatrick N, Reid ID, Ziomek E, Paice MG (1990) Appl Microbiol Biotechnol 33: 105

    Google Scholar 

  67. Kawabata N, Nakagawa K (1991) J Ferment Bioeng 71: 19

    Google Scholar 

  68. Vlahov R, Pramatarova V, Spassov G, Suchodolskaya GV, Koshcheenko KA (1990) Appl Microbiol Biotechnol 33: 172

    Google Scholar 

  69. Hocknull MD, Lilly MD (1990) Appl Microbiol Biotechnol 33: 148

    Google Scholar 

  70. Abramov S, Aharonowitz Y, Harnik M, Lamed R, Freeman A (1990) Enzyme Microb Technol 12: 982

    Google Scholar 

  71. Macaskie LE, Dean ACR (1990) Applied Microbiol Bioeng 33: 81

    Google Scholar 

  72. Ferschl A, Loidl M, Ditzelmueller G, Hinteregger C, Streichsbier F (1991) Appl Microbiol Biotechnol 35: 544

    Google Scholar 

  73. Lvingston AG, Willacy A (1991) Appl Microbiol Biotechnol 35: 551

    Google Scholar 

  74. Balfanz J, Rehm HJ (1991) Appl Microbiol Biotechnol 35: 662

    Google Scholar 

  75. Beunink J, Rehm HJ (1990) Appl Microbiol Biotechnol 34: 108

    Google Scholar 

  76. Moersen A, Rehm HJ (1990) Appl Microbiol Biotechnol 33: 206

    Google Scholar 

  77. Wijffels RH, Schukking GC, Tramper J (1990) Appl Microbiol Biotechnol 34: 399

    Google Scholar 

  78. Hooijmans CM, Geraats SGM, van Neil EWJ, Robertson LA, Heijnen JJ, Luyben KChAM (1990) Biotechnol Bioeng 36: 931

    Google Scholar 

  79. Kawakami K, Tsuruda S, Miyagi K (1990) Biotechnol Prog 6: 357

    Google Scholar 

  80. Yun JW, Jung KH, Oh JW, Lee JH (1990) Appl Biochem Biotechnol 24–25: 299

    Google Scholar 

  81. Mahmoud WM, El-Sayed HMM, Coughlin RW (1990) Biotechnol Bioeng 36: 55

    Google Scholar 

  82. Mahmoud WM, El-Sayed AHMM, Coughlin RW (1990) Biotechnol Bioeng 36: 47

    Google Scholar 

  83. El-Sayed AHMM, Mahmoud WM, Coughlin RW (1990) Biotechnol Bioeng 36: 83

    Google Scholar 

  84. Ishii K, Hiraishi A, Arai T, Kitamura H (1990) J Ferment Bioeng 69: 26

    Google Scholar 

  85. Nath PK, Izumi Y, Yamada H (1990) Enzyme Microb Technol 12: 28

    Google Scholar 

  86. Ghose S (1990) Biotechnol Tech 4: 419

    Google Scholar 

  87. Yang ST, Guo M (1990) Biotechnol Bioeng 36: 427

    Google Scholar 

  88. Yang ST, Guo M (1991) Biotechnol Bioeng 37: 375

    Google Scholar 

  89. Manjon A, Iborra JL, Martinez-Madrid C (1991) Appl Microbiol Biotechnol 35: 176

    Google Scholar 

  90. Haumont M, Magdalou J, Ziegler JC, Bidault R, Siest JP, Siest G (1991) Appl Microbiol Biotechnol 35: 440

    Google Scholar 

  91. Kren V, Flieger M, Sajdl P (1990) Appl Microbiol Biotechnol 32: 645

    Google Scholar 

  92. Facchini PJ, DiCosmo F (1991) Appl Microbiol Biotechnol 35: 382

    Google Scholar 

  93. Facchini PJ, DiCosmo F (1991) Appl Microbiol Biotechnol 33: 36

    Google Scholar 

  94. Rho D, Bedard C, Archambault J (1990) Appl Microbiol Biotechnol 33: 59

    Google Scholar 

  95. Archambault J, Volesky B, Kurz WGW (1990) Biotechnol Bioeng 35: 702

    Google Scholar 

  96. Archambault J, Volesky B, Kurz WGW (1990) Biotechnol Bioeng 35: 660

    Google Scholar 

  97. Facchini PJ, DiCosmo F (1991) Biotechnol Bioeng 37: 397

    Google Scholar 

  98. Park YH, Seo WT, Liu JR (1990) J Ferment Bioeng 70: 317

    Google Scholar 

  99. Kim DJ, Chang HN (1990) Biotechnol Bioeng 36: 460

    Google Scholar 

  100. Furuya T, Koge K, Orihara Y (1990) Plant Cell Rep 9: 125

    Google Scholar 

  101. Pras N, Booi GE, Dijkstre D, Horn AS, Malingre TM (1990) Plant Cell, Tissue Organ Cult 21: 9

    Google Scholar 

  102. Nakajima H, Sonomoto K, Sato F, Yamada Y, Tanaka A (1990) Agric Biol Chem 54:53

    Google Scholar 

  103. Vanek T, Macek T, Stransky K, Ubik K (1989) Biotechnol Tech 3: 411

    Google Scholar 

  104. Haigh JR, Linden JC (1989) Plant Cell Rep 8: 475

    Google Scholar 

  105. Agathos SN, Jeong YH, Venkat K (1990) Ann NY Acad Sci 589: 372

    Google Scholar 

  106. Looby D, Griffiths B (1990) Trends Biotechnol 8: 204

    Google Scholar 

  107. Goosen MFA (1988) Chem Eng Educ 22: 196

    Google Scholar 

  108. Wohlpart D, Gainer J, Kirwan D (1991) Biotechnol Bioeng 37: 1050

    Google Scholar 

  109. Overgaard S, Scharer JM, Moo-Young M, Bols NC (1991) Can J Chem Eng 69: 439

    Google Scholar 

  110. Lee GM, Palsson BO (1990) Biotechnol Bioeng 36: 1049

    Google Scholar 

  111. Racher AJ, Looby D, Griffiths JB (1990) J Biotechnol 15: 129

    Google Scholar 

  112. Heath C, Dilwith R, Belfort G (1990) J Biotechnol 15: 71

    Google Scholar 

  113. Ray NG, Tung AS, Hayman EG, Vournakis JN, Runstadler PW Jr (1990) Ann NY Acad Sci 589: 443

    Google Scholar 

  114. Kamihira M, Yoshida H, Iijima S, Kobayashi T (1990) J Ferment Bioeng 69: 311

    Google Scholar 

  115. Yoshioka T, Hirano R, Shioya T, Kako M (1990) Biotechnol Bioeng 35: 66

    Google Scholar 

  116. Murakami S, Chiou TW, Wang DIC (1991) Biotechnol Bioeng 37: 762

    Google Scholar 

  117. Chiou TW, Murakami S, Wang DIC (1991) Biotechnol Bioeng 37: 755

    Google Scholar 

  118. Matsushita T, Ketayama M, Kamihata K, Funatsu K (1990) Appl Microbiol Biotechnol 33: 287

    Google Scholar 

  119. Matsushita T, Hidaka H, Kamihata K, Kawakubo Y, Funatsu K (1991) Appl Microbiol Biotechnol 35: 159

    Google Scholar 

  120. Mitsuda S, Matsuda Y, Itagaki Y, Suzuki A, Kumazawa E, Higashio K, Kawanishi G (1990) J Ferment. Bioeng 70: 289

    Google Scholar 

  121. Yamaji H, Fukuda H (1991) Appl Microbiol Biotechnol 34(6): 730

    Google Scholar 

  122. Tamponnet C, Boisseau S, Lirsac PN, Barbotin JN, Poujeol C, Lievremont M, Simonneau M (1990) Appl Microbiol Biotechnol 33: 442

    Google Scholar 

  123. Hoojimans CM, Briasco CA, Huang J, Geraats BGM, Barbotin JN, Thomas D, Luyben KChAM (1990) Appl Microbiol Biotechnol 33: 611

    Google Scholar 

  124. Huang J, Hooijmans CM, Briasco CA, Geraats SGM, Luyben KChAM, Thomas D, Barbotin JN (1990) Appl Microbiol Biotechnol 33: 619

    Google Scholar 

  125. Westrin BA, Axelsson A (1991) Biotechnol Bioeng 38: 439

    Google Scholar 

  126. Westrin BA (1990) Appl Microbiol Biotechnol 34: 189

    Google Scholar 

  127. Westrin BA (1990) Biotechnol Tech 4: 409

    Google Scholar 

  128. Klein J, Schara P (1981) Appl Biochem Biotechnol 6: 91

    Google Scholar 

  129. Furusaki S, Seki M (1985) J Chem Eng Jpn 18: 389

    Google Scholar 

  130. Sakaki K, Nozawa T, Furusaki S (1988) Biotechnol Bioeng 31: 603

    Google Scholar 

  131. Sun Y, Furusaki S (1989) Biotechnol Bioeng 34: 55

    Google Scholar 

  132. Furui M, Yamashita K (1985) J Ferment Technol 63: 167

    Google Scholar 

  133. Pu HT, Yang RYK (1988) Biotechnol Bioeng 32: 891

    Google Scholar 

  134. Chresand TJ, Dale BE, Hanson SL, Gillies RJ (1988) Biotechnol Bioeng 32: 1029

    Google Scholar 

  135. Ho CS, Ju LK (1988) Biotechnol Bioeng 32: 313

    Google Scholar 

  136. Mignot L, Junter GA (1990) Appl Microbiol Biotechnol 32: 418

    Google Scholar 

  137. Dalili M, Chau PC (1987) Appl Microbiol Biotechnol 26: 500

    Google Scholar 

  138. Sayles GD, Ollis DF (1990) Biotechnol Prog 6: 153

    Google Scholar 

  139. Ruggeri B, Gianetto A, Sicardi S, Specchia V (1991) Chem Eng J 46: B21.

    Google Scholar 

  140. Furusaki S (1989) Intradiffusion effect on reactivity of immobilized microorganisms. In: Fiechter A et al (eds) Bioproducts and Bioprocesses Springer, Berlin Heidelberg New York p 71

    Google Scholar 

  141. Kumar PKR, Schügerl K (1990) J Biotechnol 14(3–4): 255

    Google Scholar 

  142. Huang J, Dhulster P, Thomas D, Barbotin JN (1990) Enzyme Microb Technol 12(12): 933

    Google Scholar 

  143. Barbotin JN, Sayadi S, Nasri M, Berry F, Thomas D (1990) Ann NY Acad Sci 613:41

    Google Scholar 

  144. Berry F, Sayadi S, Nasri M, Thomas D, Barbotin JN (1990) J Biotechnol 16: 199

    Google Scholar 

  145. Seki M, Furusaki S (1985) J Chem Eng Jpn 18: 461

    Google Scholar 

  146. Rogers PL, Lee KJ, Tribe DE (1979) Biotechnol Lett 1: 165

    Google Scholar 

  147. Lee KJ, Tribe DE, Rogers PL (1979) Biotechnol Lett 1: 421

    Google Scholar 

  148. Lee KJ, Rogers PL (1983) Chem Eng J 27: B31

    Google Scholar 

  149. Bajpai PK, Margaritis A (1986) Biotechnol Bioeng 28: 824

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Furusaki, S., Seki, M. (1992). Use and engineering aspects of immobilized cells in biotechnology. In: Modern Biochemical Engineering. Advances in Biochemical Engineering/Biotechnology, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0000710

Download citation

  • DOI: https://doi.org/10.1007/BFb0000710

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55276-5

  • Online ISBN: 978-3-540-47005-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics