Skip to main content

Biotechnological reduction of CO2 emissions

  • Chapter
  • First Online:
Modern Biochemical Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 46))

Abstract

Biotechnological fixation of carbon dioxide (CO2) is described as a measure for reducing CO2 emissions. Photosynthesis by microalgae would provide an efficient mechanism for the reduction of CO2, if well-designed photobioreactors could be constructed for the intensive cultivations. Screening of microalgae which can grow well under high CO2 concentrations would also be necessary in order to establish biotechnological CO2 reduction systems. In addition, calcification and vegetation are discussed as mechanisms for reducing CO2 emissions. Environmental monitoring is significantly important for the understanding of global CO2 cycle, so that recent development in sensor technology are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neftel A, Moor E, Oeschger H, Stauffer B (1985) Nature 315: 45

    Google Scholar 

  2. Hansen J, Lebedeff S (1988) Geophys Res Lett 15: 323

    Google Scholar 

  3. Schneider (1987) Sci Am 256: 72

    Google Scholar 

  4. Kasting JF, Toon OB, Pollack JB (1988) Sci Am 257: 90

    Google Scholar 

  5. Neftel A, Oeschger H, Schwander J, Stouffer B, Zumbrunn R (1982) Nature 295: 220

    Google Scholar 

  6. Jouzel J, Lorius C, Petit J, Genthon C, Barkhohh N, Katolyoff V, Petrov V (1987) Nature 329: 403

    Google Scholar 

  7. Barnola JM, Raynus D, Korotkevich YS, Lorius C (1987) Nature 329: 408

    Google Scholar 

  8. Edmonds JA, Reilly J (1984) Energy J 4: 21

    Google Scholar 

  9. Mintzer IN (1987) A matter of degrees: the potential for controlling the greenhouse effect. World Resources Institute, Washington, DC

    Google Scholar 

  10. Washington WM, Parkinson CL (1986) An introduction to three-dimensional climate modeling. University Science, Mill Valley, California

    Google Scholar 

  11. Schlesinger M, Mitchell JFB (1987) Rev Geophys 25: 760

    Google Scholar 

  12. Hansen JE, Takahashi T (eds) (1984) Climate processes and climate sensitivity: Geophysical Monograph 29. American geophysical Union, Washington, DC

    Google Scholar 

  13. Cess RD, Hartman D, Ramanathan V, Berroir A, Hunt GE (1986) 24: 439

    Google Scholar 

  14. Clark WC (ed) (1982) Carbon Dioxide Review 1982. Oxford Univ Press, New York

    Google Scholar 

  15. Pearman GI (ed) (1987) Greenhouse: Planning for climate change. Brill, Leiden

    Google Scholar 

  16. National Research Council (1987) Current Issues in Atmospheric Change. National Academy Press, Washington, DC

    Google Scholar 

  17. Bolin B, Doos BR, Jaeger J, Warrick RA (eds) (1986) The greenhouse effect, climatic change and ecosystems. Wiley, New York

    Google Scholar 

  18. Kuwahara H (1991) Sci & Tech Japan 10: 14

    Google Scholar 

  19. Rhyther JH (1956) Limnol Oceanogr 1: 72

    Google Scholar 

  20. Machinery System Development Association (1988) Report of feasibility studies on the development of blue-green algae production system (in Japanese)

    Google Scholar 

  21. Samson R, Leduy A (1985) Can J Chem Eng 63: 105

    Google Scholar 

  22. James CM, Al-Khars AM (1990) Aquaculture 87: 381

    Google Scholar 

  23. Mori K (1986) Biotechnol Bioeng Symp 15: 331

    Google Scholar 

  24. Iwamoto H (1990) Cultivation of Botryococcus braunii and hydrocarbon production. In: Miyachi S, Karube I, Ishida Y (eds) Current topics in marine biotechnology, Fuji Technology Press, Tokyo, p 123

    Google Scholar 

  25. Kumazawa S, Mitsui A (1989) Algae for hydrogen generation. In: Kitani O, Hall CW (eds) Biomass handbook, Gordon and Breach Scientific, New York, p 219

    Google Scholar 

  26. Miyake J, Asada Y, Kawamura S (1989) Nitrogenase. In: Kitani O, Hall CW (eds) Biomass handbook, Gordon and Breach Scientific, New York, p 362

    Google Scholar 

  27. Marcus Y, Schwarz R, Friedberg D, Kaplan A (1986) Plant Physiol 82: 610

    Google Scholar 

  28. Price GD, Badger MR (1989) Plant Physiol 91: 514

    Google Scholar 

  29. Ogawa T (1990) Plant Physiol 94: 760

    Google Scholar 

  30. Kodama M, Miyachi S (1991) Abstract, p 73: International Marine Biotechnology Conference '91. Baltimore

    Google Scholar 

  31. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Phytochemistry, in press

    Google Scholar 

  32. Takeuchi T, Utsunomiya K, Owada M, Karube I (1992) J Biotechnol, in press

    Google Scholar 

  33. Skirrow G (1975) The dissolved gases — carbon dioxide. In: Reley JP, Skirrow G (eds) Chemical oceanography, vol 2, Academic, London, p 1

    Google Scholar 

  34. Special research group for global environment, National Research Institute for Pollution and resources (ed) (1990) Global warming: Its technological countermeasure. Ohm-sha, Tokyo

    Google Scholar 

  35. Milliman JD (1974) Marine carbonates, Springer, Berlin Heidelberg New York, 375 pp

    Google Scholar 

  36. Barnes DJ, Chalker BE (1991) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z (ed) Coral reef ecosystems, ecosystems of the world, No 24, Elsevier, p 109

    Google Scholar 

  37. Smith SV (1978) Nature 273: 225

    Google Scholar 

  38. Kinsey DW, Hopley D (1991) Paleogeogr Paleoclimat Paleoecol 89: 363

    Google Scholar 

  39. Garrels RM, Mackenzie FT (eds) (1981) Carbon dioxide research and assessment program: some aspects of the shallow ocean in global carbon dioxide uptake. US Dept energy, CONF-8003115 UC11, 83 pp

    Google Scholar 

  40. Broecker WS, Takahashi T (1966) J Geophys Res 71: 1575

    Google Scholar 

  41. Borowitzka MA (1982) Mechanisms in algal calcification. In: Round FE. Chapman DJ (eds) Progress in Phycological Research, I, Elsevier Biomedical, Amsterdam, p 137

    Google Scholar 

  42. Goreau TF (1959) Biol Bull 116: 59

    Google Scholar 

  43. Karube I (1991) Sci & Tech Japan 10: 9

    Google Scholar 

  44. Stow RW, Baer RF, Randall BF (1957) Arch Phys Med Rehabil 38: 646

    Google Scholar 

  45. Severinghaus JW, Bradley AF (1958) J Appl Physiol 13: 515

    Google Scholar 

  46. Suzuki H, Tamiya E, Karube I (1987) Anal Chim Acta 199: 85

    Google Scholar 

  47. Suzuki H, Tamiya E, Karube I, Oshima T (1988) Anal Lett 21: 1323

    Google Scholar 

  48. Suzuki H, Kojima N, Sugama A, Takei F, Ikegami K, Tamiya E, Karube I (1989) Electroanalysis 1: 305

    Google Scholar 

  49. Miura N, Yao S, Shimizu Y, Yamazoe N (1991) Digest of Technical Papers, Transducers '91, San Francisco, p 558

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Karube, I., Takeuchi, T., Barnes, D.J. (1992). Biotechnological reduction of CO2 emissions. In: Modern Biochemical Engineering. Advances in Biochemical Engineering/Biotechnology, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0000705

Download citation

  • DOI: https://doi.org/10.1007/BFb0000705

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55276-5

  • Online ISBN: 978-3-540-47005-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics