Skip to main content

Artificial neural networks in bioprocess state estimation

  • Chapter
  • First Online:
Modern Biochemical Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 46))

Abstract

The application of artificial neural networks to the estimation and prediction of bioprocess variables is presented in this paper. A neural network methodology is discussed, which uses environmental and physiological information available from on-line sensors, to estimate concentration of species in the bioreactor. Two case studies are presented, both based on the ethanol production by Zymomonas mobilis. An efficient optimization algorithm which reduces the number of iterations required for convergence is proposed. Results are presented for different training sets and different training methodologies. It is shown that the neural network estimator provides good on-line bioprocess state estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

Power of the ethanol inhibition term in μ

b:

Power of the ethanol inhibition term in q p

D h−1:

Dilution rate

F l h−1:

Permeate flow

F0 l h−1:

Total feed flow to the system

Ki g l−1:

Substrate inhibition constant for growth

K′i g l−1:

Substrate inhibition constant for ethanol production

Ks g l−1:

Monod kinetic constant

K′s g l−1:

Saturation constant for q p

p g l−1:

Ethanol concentration

P′i g l−1:

Ethanol threshold concentration for ethanol production

Pm g l−1:

Maximum ethanol concentration for cell growth

P′m g l−1:

Maximum ethanol concentration for ethanol production

qp g g−1 h−1:

Specific ethanol production rate

qpm g g−1 h−1:

Maximum specific ethanol production rate

R:

Recycle ratio

s g l−1:

Glucose concentration

Si g l−1:

Threshold substrate concentration for cell growth

s0 g l−1:

Glucose concentration in the feed stream

x g l−1:

Biomass concentration

xmax g l−1:

Maximum cell concentration

Yp/s g g−1:

Ethanol yield, g ethanol per g substrate consumed

μ h−1:

Specific growth rate

μmo h−1:

Maximum specific growth rate at zero ethanol concentrations

d p :

L-dimensional target vector

E p :

Sum-of-squares error for training example p

E(w):

Total sum-of-squares error for all input patterns, function of weight vector w

G (q) :

Vector of steepest descent directions in iteration (q)

g (q) p :

Gradient vector of one input-output pattern p

g (q) uv :

Element of the gradient vector g (q)p

n:

Number of interconnection weights in the network

O pj :

Output of neuron j from the training set p

p:

number of training pattern

q:

number of iteration

r (q) :

Vector of conjugate gradient directions in Eq. (17)

S pj :

Activation state of neuron j from the training set p

S (q) :

Vector of search directions for conjugate gradient algorithm

w (q) :

Vector of neural network weights in iteration q

w ij :

Interconnection weight from node i to node j

x p :

N-dimensional network input vector

y p :

L-dimensional network output vector

z (q) :

Vector of conjugate gradient directions in Eq. (16)

α(q) :

Step size in iteration q used in Eq. (8)

β(q) :

Step size in iteration q used in Eq. (17)

γ(q) :

Step size in iteration q used in Eq. (16)

δ pv :

Change in E p due to changes in neural activation state S pu.

σ:

Argument of the sigmoid function.

References

  1. Ungar LH (1990) A bioreactor benchmark for adaptive network-based process control. In: Sutton Miller RS, Werbos WT, Werbos PJ (eds) Neural Networks for Control. MIT Press, 387

    Google Scholar 

  2. Ungar LH, Powell BA, Kamens SN (1990) Computers in Chemical Engineering 14:561

    Google Scholar 

  3. Venkatasubramanian V, Vaidyanathan R, Yamamoto Y (1990) Computers in Chemical Engineering 14: 699

    Google Scholar 

  4. Vaidyanathan R, Venkatasubramanian V (1990) Representing and diagnosing process trends using neural networks. In AIChE Annual Meeting, Chicago, Il, November 1990

    Google Scholar 

  5. Bhat N, McAvoy TJ (1990) Computers in Chemical Engineering, 14: 573

    Google Scholar 

  6. Rumelhart DE, Hinton GE, Williams RJ (1986) A general framework for parallel distributed processing. In: McClelland JL, Rumelhart DE, the PDP Research Group (eds) Parallel Distributed Processing: Explorations in the Micro structure of Cognition. MIT Press p 45

    Google Scholar 

  7. Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Advances in Biochemical Engineering 23: 37

    Google Scholar 

  8. Carleysmith SW, Fox RI (1984) Advances in Biotechnological Processes 3: 1

    Google Scholar 

  9. Tenorio MF (1990) IEEE Transactions on Neural Networks 1: 100

    Google Scholar 

  10. Wang HY., Cooney CL, Wang DIC (1979) Biotechnology and Bioengineering 21: 975

    Google Scholar 

  11. Zabriskie DW, Humphrey AE (1978) AIChE Journal 24: 138

    Google Scholar 

  12. Wang NS, Stephanopoulos GN (1984) CRC Critical Reviews in Biotechnology 2: 1

    Google Scholar 

  13. Rolf MJ, Lim HC (1985) Biotechnology and Bioengineering 27: 1236

    Google Scholar 

  14. Andersen MY, Jorgensen SB (1989) Identification of a simulated continuous yeast fermentation. In: Fox RI, Fish NM, Thornhill NF (eds) Computer Applications in Fermentation Technology: Modelling and Control of Biotechnological Processes. Elsevier, Amsterdam 205

    Google Scholar 

  15. Petersen JN, Whyatt GA (1990) Biotechnology and Bioengineering 35: 712

    Google Scholar 

  16. Stephanopoulos G, San K-Y (1984) Biotechnology and Bioengineering 26: 1176

    Google Scholar 

  17. Montgomery PA, Williams D (1989) On-line estimation of cell mass using an Extended Kalman Filter. In: Fox RI, Fish NM, Thornhill NF (eds) Computer Applications in Fermentation Technology: Modelling and Control of Biotechnological Processes. Elsevier, Amsterdam, 221

    Google Scholar 

  18. Shimizu H, Takamatsu T, Shioya S, Suga K-I (1989) Biotechnology and Bioengineering 33: 354

    Google Scholar 

  19. Ryoo D, Murphy VG, Karim MN, Tengerdy RP (1991) Biotechnology and Bioengineering. In press.

    Google Scholar 

  20. Bastin G, Dochain D (1986) Automatica 22: 705

    Google Scholar 

  21. Pomerleau Y, Perrier M (1989) Nonlinear estimation and adaptive control of a fed-batch fermentor. In: Fox RI, Fish NM, Thornhill NF (eds) Computer Applications in Fermentation Technology: Modelling and Control of Biotechnological Processes. Elsevier, Amsterdam, 361

    Google Scholar 

  22. Qian N, Sejnowski TJ (1988) Journal of Molecular Biology 202: 865

    Google Scholar 

  23. McAvoy TJ, Wang NS, Naidu S, Bhat N, Gunter J, Simmons M (1989) Interpreting biosensor data via backpropagation. In: IJCNN International Joint Conference on Neural Networks, San Diego, CA, vol 1 p 227

    Google Scholar 

  24. Hoskins JC, Himmelblau DM (1988) Computers in Chemical Engineering 12: 881

    Google Scholar 

  25. Haesloop D (1990) A neural network structure for system identification. In: Proceedings of the 1990 American Control Conference, May 23–25 p 2460

    Google Scholar 

  26. Breusegem VV, Thibault J, Cheruy A (1991) Canadian Journal of Chemical Engineering 69: 481

    Google Scholar 

  27. Thibault J, Breusegem VV, Cheruy A (1990) Biotechnology and Bioengineering 36: 1041

    Google Scholar 

  28. MacGregor JF, Marlin TE, Kresta JV (1991) Some comments of neural networks and other empirical modelling methods. In: Arkun Y, Ray WH (eds) Chemical Process Control CPC-IV, CACHE and AIChE, New York, p 665

    Google Scholar 

  29. Leonard J, Kramer MA (1990) Computers in Chemical Engineering 14: 337

    Google Scholar 

  30. Le D (1985) Mathematical Programming 32: 41

    Google Scholar 

  31. Rivera SL, Karim MN (1990) Application of dynamic programming for fermentative ethanol production by Zymomonas mobilis. In: Proceedings of the 1990 American Control Conference, San Diego, CA, May 23–25, p 2144

    Google Scholar 

  32. Swings J, De Ley J (1977) Bacteriological Reviews 41: 1

    Google Scholar 

  33. Cybenko G (1989) Mathematics of Control, Signal and Systems 2: 303

    Google Scholar 

  34. Hertz J, Krogh A, Palmer RG (1991) Introduction to the Theory of Neural Computation, vol. I. Addison-Wesley, Redwood City, CA

    Google Scholar 

  35. Morris AJ, Montague GA, Tham MT, Aynsley M, Di Massimo C, Lant P (1991) Towards improved process supervision-algorithms and knowledge based systems. In: Arkun Y, Ray WH (eds) Chemical Process Control CPC-IV, CACHE and AIChE, New York, p 585

    Google Scholar 

  36. Lee KJ, Rogers PL (1983) The Chemical Engineering Journal 27: B31

    Google Scholar 

  37. Jeong JW, Snay J, Ataai MM (1990) Biotechnology and Bioengineering 35: 160

    Google Scholar 

  38. Veeramallu U, Agrawal P (1990) Biotechnology and Bioengineering 36: 694

    Google Scholar 

  39. Fahlman SE, Lebiere C (1990) The cascade-correlation learning architecture. In: Touretzky D (ed) Advances in Neural Information Processing Systems 2, Morgan Kauffman, San Mateo, p 524

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Karim, M.N., Rivera, S.L. (1992). Artificial neural networks in bioprocess state estimation. In: Modern Biochemical Engineering. Advances in Biochemical Engineering/Biotechnology, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0000703

Download citation

  • DOI: https://doi.org/10.1007/BFb0000703

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55276-5

  • Online ISBN: 978-3-540-47005-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics