Advertisement

Multiplicative non-abelian sharing schemes and their application to threshold cryptography

  • Yvo Desmedt
  • Giovanni Di Crescenzo
  • Mike Burmester
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 917)

Abstract

We show how to construct a perfect zero-knowledge threshold proof of knowledge of an isomorphism between two graphs, and extend this result to general access structures. The provers work sequentially and are not allowed to interact among themselves, so the number of message communications each prover sends is the same as with the Goldreich-Micali-Wigderson [12] scheme. Our construction is based on multiplicative sharing schemes in which the secret belongs to a group which is not necessarily Abelian.

Keywords

Secret Sharing Access Structure Sharing Scheme Threshold Scheme Graph Isomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bellare, O. Goldreich: On defining proofs of knowledge. In: E. F. Brickell (ed.): Advances in Cryptology — Crypto '92, Proceedings (Lecture Notes in Computer Science 740), Berlin: Springer 1993, pp. 390–420Google Scholar
  2. 2.
    J. C. Benaloh, J. Leichter: Generalized secret sharing and monotone functions. In: S. Goldwasser (ed.): Advances in Cryptology, Proc. of Crypto'88 (Lecture Notes in Computer Science 403), Berlin: Springer 1990, pp. 27–35Google Scholar
  3. 3.
    G. R. Blakley: Safeguarding cryptographic keys. In: Proc. Nat. Computer Conf. AFIPS Conf. Proc, vol. 48, 1979, pp. 313–317Google Scholar
  4. 4.
    D. Chaum, J.-H. Evertse, J. van de Graaf: An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In: D. Chaum and W. L. Price (eds.): Advances in Cryptology — Eurocrypt '87 (Lecture Notes in Computer Science 304), Berlin: Springer, Berlin 1988, pp. 127–141Google Scholar
  5. 5.
    A. De Santis, Y. Desmedt, Y. Frankel, M. Yung: How to Share a Function Securely. Proceedings of the twenty-sixth annual ACM Symp. Theory of Computing (STOC), May 23—25, 1994, pp. 522–533 (full paper in preparation)Google Scholar
  6. 6.
    Y. Desmedt: Threshold cryptosystems. In: J. Seberry, Y. Zheng (eds.): Advances in Cryptology —Auscrypt '92 (Lecture Notes in Computer Science 718), Berlin: Springer 1993, pp. 3–14Google Scholar
  7. 7.
    Y. Desmedt, Y. Frankel: Shared generation of authenticators and signatures. In: J. Feigenbaum (ed.): Advances in Cryptology — Crypto '91, Proceedings (Lecture Notes in Computer Science 576), Berlin: Springer 1992, pp. 457–469Google Scholar
  8. 8.
    Y. Desmedt, Y. Frankel: Perfect zero-knowledge sharing schemes over any finite Abelian group. In: R. Capocelli, A. De Santis, and U. Vaccaro (eds.): Sequences II (Methods in Communication, Security, and Computer Science), Berlin: Springer 1993, pp. 369–378Google Scholar
  9. 9.
    Y. G. Desmedt, Y. Frankel: Homomorphic Zero-Knowledge Threshold Schemes over any Finite Abelian Group. SIAM Journal on Discrete Mathematics, 7(4), pp. 667–67 (1994)Google Scholar
  10. 10.
    U. Feige, A. Fiat, A. Shamir: Zero knowledge proofs of identity. Journal of Cryptology, 1(2), pp. 77–94 (1988)Google Scholar
  11. 11.
    Y. Frankel, Y. Desmedt: Parallel reliable threshold multisignature. Technical Report #TR-92-04-02, April 1992, Dept. of EE & CS, Univ. of Wisconsin-MilwaukeeGoogle Scholar
  12. 12.
    O. Goldreich, S. Micali, A. Wigderson: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(1), pp. 691–729, (1991)Google Scholar
  13. 13.
    S. Goldwasser, S. Micali, C. Rackoff: The knowledge complexity of interactive proof systems. Siam J. Comput., 18(1), pp. 186–208 (1989)Google Scholar
  14. 14.
    R. Graham, D. E. Knuth, O. Patashnik: Concrete Mathematics — A foundation for computer science. Addison-Wesley, Reading, MA (1989)Google Scholar
  15. 15.
    T. P. Pedersen: Distributed provers with applications to undeniable signatures. In: D. W. Davies (ed.): Advances in Cryptology, Proc. of Eurocrypt '91 (Lecture Notes in Computer Science 547), Berlin: Springer April 1991, pp. 221–242Google Scholar
  16. 16.
    F. P. Preparata: Introduction to computer engineering. Harper & Row, New York (1985)Google Scholar
  17. 17.
    R. L. Rivest, A. Shamir, L. Adleman: A method for obtaining digital signatures and public key cryptosystems. Commun. ACM, 21, pp. 294–299 (1978)Google Scholar
  18. 18.
    A. Shamir: How to share a secret. Commun. ACM, 22, pp. 612–613 (1979)Google Scholar
  19. 19.
    V. M. Sidelnikov: Exponentiation-based key generation using noncommutative groups. In: Proceedings 1994 IEEE International Symposium on Information Theory, p. 497, Trondheim, Norway, June 27–July 1, 1994Google Scholar
  20. 20.
    G. J. Simmons, W. Jackson, K. Martin: The geometry of shared secret schemes. Bulletin of the Institute of Combinatorics and its Applications, 1, pp. 71–88 (1991)Google Scholar
  21. 21.
    M. Tompa, H. Woll: Random self-reducibility and zero-knowledge interactive proofs of possession of information. In: 28th Annual Symp. on Foundations of Computer Science (FOCS), pp. 472–482, IEEE Computer Society Press (1987)Google Scholar
  22. 22.
    A. Vandermonde: Mémoire sur des irrationnelles de différens ordres avac une application au cercle, 1772. Histoire de l'Académie Royale des Sciences, part 1, pp. 71–72; Mémoires de Mathématique et de Physique, Tirés des Registres de l'Academie Royale des Sciences, pp. 489–498Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Yvo Desmedt
    • 1
  • Giovanni Di Crescenzo
    • 2
  • Mike Burmester
    • 3
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of Wisconsin-MilwaukeeUSA
  2. 2.Dipartimento di Informatica ed ApplicazioniUniversità di SalernoBaronissi (SA)Italy
  3. 3.Department of MathematicsRH-University of LondonEghamUK

Personalised recommendations