Generation of 3-dimensional plant bodies by double wall map and stereomap systems

  • Jacqueline Lück
  • Hermann B. Lück
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 153)


The seven described archetypes of development (Table 1) cover all developmental possibilities for systems with parity and a unique cell boundary length of 4, 5, or 6 (column (a)). The geometrical constraints given by the quantification of wall lengths according to the number of segments of which they are composed, lead in some cases to 3-dimensional plant bodies described by the cellular arrangement in their epidermis. All archetypes exhibit very common botanical features. Real organisms differ essentially from archetypical ones by non uniform lifespans of cells and finite mitotic activity of most cells. The relationship between maps respecting various lifespans and the corresponding archetype will be the object of a separate publication.

Stereomaps, representing double wall regions in 3-dimensional space, are somewhat difficult to interpret geometrically. In the case of systems with parity, the upcoming constraints, given by the edge length specification, will very often lead to impossibilities, as not any more dimension is available. In this case, cells become either smaller or stop to divide. This is a typical case of division stop under geometrical constraint (cf. A. Paz, this volume).


Cell Boundary Growth Center Boundary Segment Identical Boundary Division Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Schüepp (1966)-Meristeme; Birkhäuser Vlg, Basel.Google Scholar
  2. 2.
    K.J. Dormer (1980)-Fundamental tissue geometry for biologists; Cambridge Univ.Pr.Google Scholar
  3. 3.
    H.B. & J. Lück (1978) — Proc.Int.Symp.on Math.Topics in Biol.,Res.Inst.Math.; Kyoto:174–185.Google Scholar
  4. 4.
    J. Lück & H.B. Lück (1979)-in ‘Graph grammars and their applications to computer science and biology', V.Claus,H.Ehrig & G.Rozenberg,eds,Lect.Notes Comp.Sc.;Springer Vlg Heidelberg-New-York, 73:284–300.Google Scholar
  5. 5.
    H.B. Lück & J. Lück (1981)-in 'Actes ler Sé l'Ecole de Biol.théor'., CNRS-ENS, H.LeGuyader & Th. Moulin,eds;ENSTA,Paris; 373–398.Google Scholar
  6. 6.
    H.B. & J. Lück (1982)-Ber.dtsch.Bot.Ges. 95(3).Google Scholar
  7. 7.
    H.B. Lück & J. Lück (1982)-Sec.World Conf.on the Serv.on Man,Las Palmas 1: 457–466.Google Scholar
  8. 8.
    J. Lück & H.B. Lück (1982)-‘Actes 2ème Sé l'Ecole de Biol.Théor.,CNRS-ENS,H.LeGuyader,ed.;ENSTA,Paris.Google Scholar
  9. 9.
    K. Esau (1953)-Plant anatomy; Wiley, New-York.Google Scholar
  10. 10.
    A. Rosenfeld & J.P. Strong (1971)-Software Ingineering 2: 227–239.Google Scholar
  11. 11.
    J.M. Carlyle, S. Greibach & A. Paz (1974)-Proc.15th Ann.Symp.Switch.Autom.Theory; 1–12.Google Scholar
  12. 12.
    A. Lindenmayer & G. Rozenberg (1979)-in cf.¦4¦': 301–316.Google Scholar
  13. 13.
    K. Nyrup & B. Mayoh (1979)-in cf.¦4¦': 331–340.Google Scholar
  14. 14.
    J. Lück & H.B. Lück (1981)-cf.¦5.Google Scholar
  15. 15.
    J. Lück, A. Lindenmayer & H.B. Lück (1982)-(to appear).Google Scholar
  16. 16.
    G. Rozenberg & A. Salomaa (1980)-The mathematical theory of L systems; Acad.Pr.Google Scholar
  17. 17.
    P. Kornmann (1965)-Helgol.wiss. Meeresunters. 12:219–238.Google Scholar
  18. 18.
    P. Kornmann & P.-H. Sahling (1977)-Helgol.wiss.Meeresunters. 29:1–289.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Jacqueline Lück
    • 1
  • Hermann B. Lück
    • 1
  1. 1.Laboratoire de Botanique analytique et Structuralisme végétal Faculté des Sciences et Techniques de St-JérômeC.N.R.S. E.R. 161Marseille cedex 13France

Personalised recommendations