On context-free graph languages generated by edge replacement

  • Annegret Habel
  • Hans -Jörg Kreowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 153)


Edge replacement systems provide a simple mechanism to generate graph languages. They generalize context-free (string) grammars to the case of graphs. This paper summarizes some recent results on graph languages generated by edge replacement. Especially, we show that our languages are fixed points of their productions (considered as equations) and that they can be generated by language operations (substitution and iteration) from finite graph languages.


Graph Grammar Language Family Graph Language Parallel Derivation String Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /Bi 76/.
    Bird, R.: Programs and Machines, Wiley, New York (1976).Google Scholar
  2. /CER 79/.
    Claus, V., Ehrig, H., Rozenberg, G. (eds.): Graph-Grammars and their Application to Computer Science and Biology, Lect. Not. Comp. Sci.73 (1979)Google Scholar
  3. /DG 78/.
    Della Vigna, P., Ghezzi, C.: Context-free Graph Grammars, Inf.Contr. 37, 207–233 (1978)Google Scholar
  4. /Eh 79/.
    Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars, Lect. Not. Comp. Sci. 73 (1979), 1–69Google Scholar
  5. /FKZ 76/.
    Farrow, R., Kennedy, K., Zucconi, L.: Graph Grammars and Global Program Data Flow Analysis; Proc. 17th Ann. Symp. on Found. of Comp. Sci., Houston (1976)Google Scholar
  6. /GR 62/.
    Ginsburg, S., Rice, G.: Two Families of Languages Related to ALGOL, Journ. ACM, vol. 9, 350–371 (1962)Google Scholar
  7. /Gr 71/.
    Gruska, J.: A Characterization of Context-free Languages, Journ. Comp. Syst. Sci. 5, 353–364 (1971)Google Scholar
  8. /JR 80/.
    Janssens, D., Rozenberg, G.: On the structure of node-label-controlled graph grammars; Information Science 20, 191–216 (1980)Google Scholar
  9. /Ka 82/.
    Kaul, M.: Private Communication, 1982Google Scholar
  10. /Kl 52/.
    Kleene, S.C.: Introduction to Meta Mathematics, D. Von Nostrand, Inc., Princeton, N.J. (1952)Google Scholar
  11. /Kr 77/.
    Kreowski, H.-J.: Manipulationen von Graphmanipulationen, Ph.D.Thesis, Techn. Univ. Berlin, Comp. Sci. Dept., 1977 (short version in LNCS 56 (1977), 275–286)Google Scholar
  12. /Kr 78/.
    -: A Pumping Lemma for Context-free Graph Languages, Lect. Not. Comp. Sci. 73, (1979), 270–283Google Scholar
  13. /Ma 74/.
    Manna, Z.: Mathematical Theory of Computation; McGraw-Hill, New York (1974)Google Scholar
  14. /Na 79/.
    Nagl, M.: A Tutorial and Bibliographical Survey on Graph Grammars, Lect. Not. Comp. Sci. 73 (1979), 70–126Google Scholar
  15. /Wo 70/.
    Woods, W.A.: Transition Network Grammars for Natural Language Analysis, Comm. of the ACM 1970, 13(10), 591–606Google Scholar
  16. /Yn 71/.
    Yntema, M.K.: Cap Expressions for Context-Free Languages, Inf. Contr. 18 (1971), 311–318Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Annegret Habel
    • 1
  • Hans -Jörg Kreowski
    • 2
  1. 1.Fachbereich InformatikTechnische Universität BerlinBerlin 10
  2. 2.Fachbereich Mathematik/InformatikUniversität BremenBremen 33

Personalised recommendations