Algorithms for the generation and drawing of maps representing cell clones

  • Mark de Does
  • Aristid Lindenmayer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 153)


Groups of dividing cells with common descent (cell clones) occur in developing tissues and often exhibit highly regular and repeating spatial and temporal patterns. In order to describe such patterns in cell layers, parallel map rewriting systems are introduced. Some of their properties are discussed and the drawing of the maps' geometric representations is implemented. A number of biologically motivated geometric rules for such drawings are presented and compared.


Cell Configuration Division Production Division Pattern Preprophase Band Wall Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, L.A. & Lindenmayer, A. 1981. Models for growth of clones in hexagonal cell arrangements: applications in Drosophila wing disc epithelia and plant epidermal tissues. J. Theor. Biol., 90: 495–514.Google Scholar
  2. 2.
    Bopp, M. & Feger, F. 1960. Das Grundschema der Blattentwicklung bei Lebermoosen. Rev. bryol. lichenol. (Paris), 29: 256–273.Google Scholar
  3. 3.
    Carlyle, J.W., Greibach, S.A. & Paz, A.1974. A two-dimensional generating system modeling growth by binary cell division. Proc. 15th Annual Symp. on Switching and Automata Theory, New Orleans, pp. 1–12.Google Scholar
  4. 4.
    Culik, K. II & Lindenmayer, A. 1976. Parallel graph generating and graph recurrence systems for multicellular development. Int. J. Gen. Systems, 3: 53–66.Google Scholar
  5. 5.
    Culik, K. II & Wood, D. 1979. A mathematical investigation of propagating graph OL systems. Information and Control, 43: 50–82.Google Scholar
  6. 6.
    Errera, L. 1888. Über Zellformen und Seifenblasen. Bot. Zentralbl., 34: 395.Google Scholar
  7. 7.
    Herman, G.T. & Rozenberg, G., with a contribution by A. Lindenmayer, 1975. Developmental Systems and Languages. North-Holland Publ. Co., Amsterdam.Google Scholar
  8. 8.
    Korn, R.W. 1980. The changing shape of plant cells: transformations during cell proliferation. Annals of Botany, 46: 649–666.Google Scholar
  9. 9.
    Korn, R.W. & Spalding, R.M. 1973. The geometry of plant epidermal cells. New Phytologist, 72: 1357–1365.Google Scholar
  10. 10.
    Lewis, F.T. 1926. The effect of cell division on the shape and size of hexagonal cells. Anatomical Record, 33: 331–355.Google Scholar
  11. 11.
    Lindenmayer, A. 1975. Developmental algorithms for multicellular organisms: a survey of L-systems. J. Theor. Biol., 54: 3–22.Google Scholar
  12. 12.
    Lindenmayer, A. 1983. Models for plant tissue development with cell division orientation regulated by preprophase bands of microtubules. To be published.Google Scholar
  13. 13.
    Lindenmayer, A. & Culik, K. II. 1979. Growing cellular systems: generation of graphs by parallel rewriting. Int. J. Gen. Systems, 5: 45–55.Google Scholar
  14. 14.
    Lindenmayer, A. & Rozenberg, G. 1979. Parallel generation of maps: developmental systems for cell layers. In: Graph Grammars and their Application to Computer Science and Biology, edited by V. Claus et al., Lecture Notes in Computer Sci., Springer-Verlag, Berlin, Vol. 73, pp. 301–316.Google Scholar
  15. 15.
    Lück, J. & Lück, H.B. 1979. Two-dimensional, differential, intercalary plant tissue growth and parallel graph generating and graph recurrence systems. Ibid.In:, pp. 284–300.Google Scholar
  16. 16.
    Lück, J. & Lück, H.B. 1981. Proposition d'une typologie de l'organisation cellulaire dès tissues végétaux. Actes 1er Sém. de l'Ecole de Biologie théorique du CNRS — ENS, Paris, edited by H. Le Guyader & T. Moulin, ENSTA, Paris, 335–371.Google Scholar
  17. 17.
    Lück, J., Lindenmayer, A. & Lück, H.B. 1983. Cell neighbour and descent relationships in meristematic cell layers and tetrad analysis. To be published.Google Scholar
  18. 18.
    Mayoh, B.H. 1974. Multidimensional Lindenmayer organisms. In: L Systems, edited by G. Rozenberg & A. Salomaa, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Vol. 15, pp. 302–326.Google Scholar
  19. 19.
    Morris, V.B. 1970. Symmetry in receptor mosaic demonstrated in the chick from the frequencies, spacing and arrangement of the types of retinal receptor. J. Comp. Neurol., 140: 359–387.Google Scholar
  20. 20.
    Nägeli, C. 1845. Wachsthumsgeschichte der Laub-und Lebermoose. Zeitschr. für wissensch. Botanik (Zürich), 2: 138–210.Google Scholar
  21. 21.
    Nagl, M. 1976. Graph rewriting systems and their application in biology. In: Mathematical Models in Medicine, edited by J. Berger et al., Lecture Notes in Biomathematics, Springer-Verlag, Berlin, Vol. 11, pp. 135 156.Google Scholar
  22. 22.
    Paz, A. & Raz, Y. 1979. Complexity of pattern generation by map-L systems. In: Graph Grammars and their Application to Computer Science and Biology, edited by V. Claus et al., Lecture Notes in Comp. Sci., Springer-Verlag, Berlin, Vol. 73, pp. 367–378.Google Scholar
  23. 23.
    Rozenberg, G. & Salomaa, A. 1980. The Mathematical Theory of L Systems. Academic Press, New York.Google Scholar
  24. 24.
    Siero, P.L.J., Rozenberg, G. & Lindenmayer, A. 1982. Cell division patterns: syntactical description and implementation. Computer Graphics and Image Processing, 18: 329–346.Google Scholar
  25. 25.
    Thompson, D.W. 1917. On Growth and Form. Cambridge Univ. Press, Cambridge.Google Scholar
  26. 26.
    Tutte, W.T. 1963. How to draw a graph. Proc. London Math. Soc., 3rd ser., 13: 743–767.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Mark de Does
    • 1
  • Aristid Lindenmayer
    • 1
  1. 1.Vakgroep Theoretische BiologieRijksuniversiteit UtrechtUtrechtHolland

Personalised recommendations