Global minimization of indefinite quadratic problems

Part of the Lecture Notes in Computer Science book series (LNCS, volume 268)


Mixed Integer Linear Program Linear Complementarity Problem Piecewise Linear Approximation Feasible Domain Concave Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BENA85]
    Benacer, R. and Tao, P.T. Global maximization of a nondefinite quadratic function over a convex polyhedron. FERMAT Days 1985, Mathematics for Optimization (J.-B. Hirriart-Urruty, editor), Elsevier Sci. Publ., 65–77.Google Scholar
  2. [BRAY81]
    Brayton, R.K., Hachtel, G.D., and Sangiovanni-Vincentelli, A.L. A survey of Optimization Techniques for Integrated-Circuit Design. Proceedings of the IEEE, Vol. 69, No. 10 (1981), 1334–1362.Google Scholar
  3. [CIEL82]
    Ciesielski, M.J. and Kinnen, E. An Analytic Method for Compacting Routing Area in Integrated Circuits. Proceedings of the 19th Design Automation Conference, Las Vegas, NV. (1982), 30–37.Google Scholar
  4. [CIRI85]
    Cirina, M. A class of nonlinear programming test problems. Working paper, Dipart. di Informatica, Torino (1985).Google Scholar
  5. [CIRI86]
    Cirina, M. A finite algorithm for global quadratic minimization. Working paper, Dipart. di Informatica, Torino (1986).Google Scholar
  6. [CROW82]
    Crowder, H., Johnson, E.L. and Padberg, M.W. Solving large-scale zero-one linear programming problems. Oper. Res. Vol. 31, No. 5 (1982), 803–834.Google Scholar
  7. [GEOF72]
    Geoffrion, A. Generalized Bender's Decompositions. J. Optimiz. Theory Appl. 10 (1972), 237–260.CrossRefGoogle Scholar
  8. [KALA84]
    Kalantari, B. Large scale concave quadratic minimization and extensions. PhD thesis, Computer Sci. Dept., University of Minnesota 1984.Google Scholar
  9. [KEDE83]
    Kedem, G. and Watanabe, H. Optimization Techniques for IC Layout and Compaction. Proceedings IEEE Intern. Conf. in Computer Design: VLSI in Computers (1983), 709–713.Google Scholar
  10. [KOUG79]
    Kough, P.F. The Indefinite Quadratic Programming Problem. Oper. Res. Vol. 27, No.3 (1979), 516–533.Google Scholar
  11. [MALI82]
    Maling, K., Mueller, S.H., and Heller, W.R. On finding most optimal rectangular package plans. Proceedings of the 19th Design Automation Conference, Las Vegas, NV. (1982), 663–670.Google Scholar
  12. [MUEL79]
    Mueller, R.K. A method for solving the indefinite quadratic programming problem. Manag. Science Vo. 16, No. 5 (1979), 333–339.Google Scholar
  13. [MEYE83]
    Meyer, R.R. Computational Aspects of Two-segment Separable Programming. Math. Progr. 26 (1983), 21–32.Google Scholar
  14. [MURT83]
    Murtagh, B.A., and Saunders, M.A. MINOS 5.0 User's Guide. Tech. Rep. SOL 83-20 (1983), Dept. of Oper. Res., Stanford Univ.Google Scholar
  15. [PARD86]
    Pardalos, P.M. and Rosen, J.B. Methods for global concave minimization: A bibliographic survey. SIAM Review 28 (1986), 367–379.CrossRefGoogle Scholar
  16. [PARD85A]
    Pardalos, P.M. and Rosen, J.B. Global Optimization Approach to the Linear Complementarity Problem. Tech. Report 84-37 (revised Aug. 1985) Computer Sci. Dept. Univ. of Minnesota.Google Scholar
  17. [PARD85B]
    Pardalos, P.M. Integer and separable programming techniques for large scale global optimization problems. PhD thesis, Computer Sc. Dept., University of Minnesota (1985).Google Scholar
  18. [ROSE86]
    Rosen, J.B. and Pardalos, P.M. Global minimization of large-scale constrained concave quadratic problems by separable programming. Math. Progr. 34 (1986), 163–174.CrossRefGoogle Scholar
  19. [SOUK84]
    Soukup, J. Circuit Layout. Proceedings of the IEEE. Vol. 69, No. 10 (1984), 1281–1304.Google Scholar
  20. [THAK78]
    Thakur, L.S. Error Analysis for Convex Separable Programs: The Piecewise Linear Approximation and the Bounds on the Optimal Objective Value. SIAM J. Appl. Math Vol. 34, No. 4 (1978), 704–714.CrossRefGoogle Scholar
  21. [THOA83]
    Thoai, N.V. and Tuy, H. Solving the Linear Complementarity Problem through Concave Programming. Zh. Vychisl. Mat. i. Mat. Fiz. 23(3) (1983), 602–608.Google Scholar
  22. [TUY84]
    Tuy, H. Global Minimization of the Difference of two Convex functions. In: Selected Topics in Operations Research and Mathematical Economics. Lecture Notes Econ. Math. Syst. 226 (1984), 98–118.Google Scholar
  23. [WATA84]
    Watanabe, H. IC Layout Generation and Compaction Using Mathematical Optimization. Ph.D thesis Comp. Sc. Dept. Rochester Univ. (1984).Google Scholar

Copyright information

© Springer-Verlag 1987

Personalised recommendations