Advertisement

Bilinear programming methods for nonconvex quadratic problems

Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 268)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AL-K83]
    Al-Khayyal, F. and Falk, J.E. Jointly constrained biconvex programming. Math. of Oper. Res., Vol. 8, No. 2 (1983), 273–286.Google Scholar
  2. [ALTM68]
    Altman, M. Bilinear programming. Bull. Acad. Pol.Sci. Ser. Sci. Math. Astronom. Phy. 19 (1968), 741–746.Google Scholar
  3. [CZOC82A]
    Czochralska, I. Bilinear programming. Zastosowania Mathematyki XVII, 3 (1982), 495–514.Google Scholar
  4. [CZOC82B]
    Czochralska, I. The method of bilinear programming for nonconvex quadratic programming. Zastosowania Mathematyki XVII, 3 (1982), 515–525.Google Scholar
  5. [GALL77]
    Gallo, G. and Ulkulu, A. Bilinear programming: An exact algorithm. Mathem. Progr. 12 (1971), 173–194.CrossRefGoogle Scholar
  6. [K0NN71A]
    Konno, H. Bilinear programming: Part I. An algorithm for solving bilinear programs. Technical Report 71-9 (1971), Oper. Res., Stanford Univ.Google Scholar
  7. [KONN71B]
    Konno, H. Bilinear programming: Part II. Applications of bilinear programming. Technical Report 71-10 (1971), Oper. Res., Stanford Univ.Google Scholar
  8. [KONN76A]
    Konno, H. A cutting plane algorithm for solving bilinear programs. Math. Progr. 11 (1976), 14–27.CrossRefGoogle Scholar
  9. [KONN76B]
    Konno, H. Maximization of a convex quadratic function under linear constraints. Math. Progr. 11 (1976), 117–127.CrossRefGoogle Scholar
  10. [KONN80]
    Konno, H. Maximizing a convex function over a hypercube. J. Oper. Res. Soc. Japan 23 (1980), 171–189.Google Scholar
  11. [KONN81]
    Konno, H. An algorithm for solving bilinear knapsack problems. J. Oper. Res. Soc. Japan 24 (9181), 360–373.Google Scholar
  12. [SHER80]
    Sherali, H. and Shetty, C.M. A finitely convergent algorithm for bilinear programming problems using polar cuts and disjunctive face cuts. Math. Progr. 19 (1980), 14–31.CrossRefGoogle Scholar
  13. [THIE80]
    Thieu, T.V. Relationship between bilinear programming and concave minimization under linear constraints. Acta Math. Vietnam 5 (1980), 106–113.Google Scholar
  14. [VAIS76]
    Vaish, H. and Shetty C.M. The bilinear programming problem. Naval Res. Logist. Quarterly 23 (1976), 303–309.Google Scholar
  15. [VAIS77]
    Vaish, H. and Shetty C.M. A cutting plane algorithm for the bilinear programming problem. Naval Res. Logist. Quarterly 24 (1977), 83–94.Google Scholar

Copyright information

© Springer-Verlag 1987

Personalised recommendations