Skip to main content

EEG Features Selection by Using Tasmanian Devil Optimization Algorithm for Stress Detection

  • Conference paper
  • First Online:
Evolutionary Artificial Intelligence (ICEASSM 2017)

Part of the book series: Algorithms for Intelligent Systems ((AIS))

  • 52 Accesses

Abstract

Stress detection is imperative in human–machine interaction systems to monitor the mental health of the person. Various stress detection schemes based on machine learning and deep learning have been presented in the past. However, the performance of the stress detection system is challenging due to inadequate training data, poor feature variability, poor feature selection, and the intricacy of the deep learning framework. This paper provides the stress detection system using multiple electroencephalograph (EEG) signals and a Tasmanian Devil Optimization (TDO)-based feature selection scheme to select important and distinctive features. It uses a lightweight Deep Convolutional Neural Network (DCNN) to improve feature representation and stress detection. The efficiency of the suggested scheme is estimated on the public Dataset for Emotion Analysis using Physiological Signals (DEAP). It provides a stress detection rate of 97.95 and 89.75% with and without feature selection. It is observed that the proposed feature selection scheme provides a significant improvement in the traditional feature selection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gedam S, Paul S (2021) A review on mental stress detection using wearable sensors and machine learning techniques. IEEE Access 9:84045–84066

    Article  Google Scholar 

  2. Zamkah A, Hui T, Andrews S, Dey N, Shi F, Sherratt RS (2020) Identification of suitable biomarkers for stress and emotion detection for future personal affective wearable sensors. Biosensors 10(4):40

    Article  Google Scholar 

  3. Värbu K, Muhammad N, Muhammad Y (2022) Past, present, and future of EEG-based BCI applications. Sensors 22(9):3331

    Article  Google Scholar 

  4. Panicker SS, Gayathri P (2019) A survey of machine learning techniques in physiology-based mental stress detection systems. Biocybern Biomed Eng 39(2):444–469

    Article  Google Scholar 

  5. ZangenehSoroush M, Tahvilian P, Nasirpour MH, Maghooli K, Sadeghniiat-Haghighi K, VahidHarandi S, JafarniaDabanloo N (2022) EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary wavelet transform and machine learning algorithms. Front Physiol 13:910368

    Google Scholar 

  6. Dora M, Holcman D (2022) Adaptive single-channel EEG artifact removal with applications to clinical monitoring. IEEE Trans Neural Syst Rehabil Eng 30:286–295

    Article  Google Scholar 

  7. Chuang CH, Chang KY, Huang CS, Jung TP (2022) IC-U-Net: a U-Net-based denoising autoencoder using mixtures of independent components for automatic EEG artifact removal. Neuroimage 263:119586

    Article  Google Scholar 

  8. Pourmohammadi S, Maleki A (2020) Stress detection using ECG and EMG signals: a comprehensive study. Comput Methods Programs Biomed 193:105482

    Article  Google Scholar 

  9. Tuncer T, Dogan S, Subasi A (2021) EEG-based driving fatigue detection using multilevel feature extraction and iterative hybrid feature selection. Biomed Signal Process Control 68:102591

    Article  Google Scholar 

  10. Risqiwati D, Wibawa AD, Pane ES, Islamiyah WR, Tyas AE, Purnomo MH (2020) Feature selection for EEG-based fatigue analysis using pearson correlation. In: 2020 International seminar on ıntelligent technology and ıts applications (ISITIA). IEEE, pp 164–169

    Google Scholar 

  11. Pei Z, Wang H, Bezerianos A, Li J (2020) EEG-based multiclass workload identification using feature fusion and selection. IEEE Trans Instrum Meas 70:1–8

    Google Scholar 

  12. Sakalle A, Tomar P, Bhardwaj H, Iqbal A, Sakalle M, Bhardwaj A, Ibrahim W (2022) Genetic programming-based feature selection for emotion classification using EEG signal. J Healthc Eng

    Google Scholar 

  13. Ghosh R, Sinha N, Biswas SK, Phadikar S (2019) A modified grey wolf optimization-based feature selection method from EEG for silent speech classification. J Inf Optim Sci 40(8):1639–1652

    Google Scholar 

  14. Mohdiwale S, Sahu M, Sinha GR, Bhateja V (2020) Statistical wavelets with harmony search-based optimal feature selection of EEG signals for motor imagery classification. IEEE Sens J 21(13):14263–14271

    Article  Google Scholar 

  15. Sharma LD, Bohat VK, Habib M, Ala’M AZ, Faris H. Aljarah I (2022). Evolutionary inspired approach for mental stress detection using EEG signal. Expert Syst Appl 197:116634

    Google Scholar 

  16. Li Z, Qiu L, Li R, He Z, Xiao J, Liang Y, Pan J (2020) Enhancing BCI-based emotion recognition using an improved particle swarm optimization for feature selection. Sensors 20(11):3028

    Google Scholar 

  17. Dhake D, Angal Y (2022) EEG signal enhancement using wavelet-based soft-thresholding approach. In: 2022 3rd International conference for emerging technology (INCET). IEEE, pp 1–5

    Google Scholar 

  18. Kalbkhani H, Shayesteh MG (2017) Stockwell transform for epileptic seizure detection from EEG signals. Biomed Signal Process Control 38:108–118

    Article  Google Scholar 

  19. Al-Qerem A, Kharbat F, Nashwan S, Ashraf S, Blaou K (2020) General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution. Int J Distrib Sens Netw 16(3):1550147720911009

    Article  Google Scholar 

  20. Sun J, Wei M, Luo N, Li Z, Wang H (2022) Euler common spatial patterns for EEG classification. Med Biol Eng Comput 60(3):753–767

    Article  Google Scholar 

  21. Dehghani M, Hubálovský Š, Trojovský P (2022) Tasmanian devil optimization: a new bio-inspired optimization algorithm for solving optimization algorithms. IEEE Access 10:19599–19620

    Article  Google Scholar 

  22. Aribowo W, Rahmadian R, Widyartono M, Hermawan AC, Wardani AL, Kartini UT (2022) Tasmanian devil optimization for economic load dispatch. In: 2022 Fifth international conference on vocational education and electrical engineering (ICVEE). IEEE, pp 169–173

    Google Scholar 

  23. Dubey VK, Kaushik VD (2023) Identification of skin lesion with adaptive tasmanian devil optimization-based transfer learning. In: Soft computing: theories and applications: proceedings of SoCTA 2022. Springer Nature Singapore, Singapore, pp 317–333

    Google Scholar 

  24. Bhangale KB, Kothandaraman M (2022) Survey of deep learning paradigms for speech processing. Wirel Pers Commun 125(2):1913–1949

    Article  Google Scholar 

  25. Bhangale K, Kothandaraman M (2023) Speech emotion recognition is based on multiple acoustic features and deep convolutional neural networks. Electronics 12(4):839

    Article  Google Scholar 

  26. Bhangale K, Ingle P, Kanase R, Desale D (2022) Multi-view multi-pose robust face recognition based on VGGNet. In: Second international conference on ımage processing and capsule networks: ICIPCN 2021, vol 2. Springer International Publishing, pp 414–421

    Google Scholar 

  27. Koelstra S, Muhl C, Soleymani M, Lee JS, Yazdani A, Ebrahimi T, Patras I (2011) Deap: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 3(1):18–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipali Dhake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhake, D., Angal, Y. (2024). EEG Features Selection by Using Tasmanian Devil Optimization Algorithm for Stress Detection. In: Asirvatham, D., Gonzalez-Longatt, F.M., Falkowski-Gilski, P., Kanthavel, R. (eds) Evolutionary Artificial Intelligence. ICEASSM 2017. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-8438-1_18

Download citation

Publish with us

Policies and ethics