Skip to main content

Visual SLAM Algorithm Based on Target Detection and Direct Geometric Constraints in Dynamic Environments

  • Conference paper
  • First Online:
Image and Graphics Technologies and Applications (IGTA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1910))

Included in the following conference series:

  • 262 Accesses

Abstract

To enhance the localization accuracy and robustness of the visual SLAM algorithm in dynamic environments, this paper proposes a methodology that relies on target detection and direct geometric constraints. The algorithm first obtains static feature points and possible dynamic feature points of the current frame using a YOLOV7 target detection network. It then judges the real dynamic target using the geometric change relationship between the edges connecting the feature points of two adjacent frames. Based on the motion information of the dynamic target in past frames, the potential dynamic targets of the current frame are again examined, all feature points in the dynamic target frame are removed. Comparative experiments on the TUM dataset show that the proposed algorithm reduces the absolute trajectory error by an average of 94.69% compared to ORB-SLAM2. It outperforms mainstream dynamic vision SLAM schemes such as Dyna-SLAM and DS_SLAM in terms of localization accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, S.D., Dissanayake, G.: A critique of current developments in simultaneous localization and mapping. Int. J. Adv. Robot. Syst. 13(5) (2016)

    Google Scholar 

  2. Qin, T., Li, P., Shen, S.: VINS-mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 34(4), 1004–1020 (2018)

    Article  Google Scholar 

  3. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017). https://doi.org/10.1109/TRO.2017.2705103

    Article  Google Scholar 

  4. Campos, C., Elvira, R., Rodríguez, J.J.G., et al.: ORBSLAM3: an accurate open-source library for visual, visual–inertial, and multimap SLAM. J. IEEE Trans. Robot. 37(6), 1874–1890 (2021)

    Article  Google Scholar 

  5. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

  6. Wang, K., Yao, X., Huang, Y., et al.: Review of visual SLAM in dynamic environment. J. Robot. 43(6), 715–732 (2021)

    Google Scholar 

  7. Sun, Y., Liu, M., Meng, M.Q.H.: Improving RGB-D SLAM in dynamic environments: a motion removal approach. Robot. Auton. Syst. 89, 110–122 (2017). https://doi.org/10.1016/j.robot.2016.11.012

    Article  Google Scholar 

  8. Fu, D., Xia, H., Qiao, Y.: Monocular visual-inertial navigation for dynamic environment. Remote Sens. 13(9), 1610 (2021). https://doi.org/10.3390/rs13091610

    Article  Google Scholar 

  9. Bescos, B., Fácil, J.M., Civera, J., et al.: DynaSLAM: tracking, mapping, and inpainting in dynamic scenes. J. IEEE Robot. Autom. Lett. 3(4), 4076–4083 (2018)

    Article  Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., et al.: Mask RCNN. In: The IEEE International Conference on Computer Vision, Venice, Italy, pp. 2980–2988 (2017)

    Google Scholar 

  11. Yu, C., Liu, Z., Liu, X., et al.: DS-SLAM: a semantic visual SLAM towards dynamic environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, pp. 1168–1174 (2018)

    Google Scholar 

  12. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017). https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  13. Wu, W., Guo, L., Gao, H., et al.: YOLO-SLAM: a semantic SLAM system towards dynamic environment with geometric constraint. J. Neural Comput. Appl. 34(8), 6011–6026 (2021)

    Article  Google Scholar 

  14. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, Piscataway, USA. IEEE (2016)

    Google Scholar 

  15. Yan, L., Hu, X., Zhao, L., et al.: DGS-SLAM: a fast and robust RGBD SLAM in dynamic environments combined by geometric and semantic information. J. Remote Sens. 14(3), 795–819 (2022)

    Article  Google Scholar 

  16. Saputra, M.R.U., Markham, A., Trigoni, N.: Visual SLAM and structure from motion in dynamic environments: a survey. ACM Comput. Surv. 51(2), 1–36 (2018). https://doi.org/10.1145/3177853

    Article  Google Scholar 

  17. Sheng, C., Pan, S.G., Gao, W.: Dynamic-DSO: direct sparse odometry using objects semantic information for dynamic environments. Appl. Sci. 10(4), 1467 (2020). https://doi.org/10.3390/app10041467

    Article  Google Scholar 

  18. Soares, J.C.V., Gattass, M., Meggiolaro, M.A.: Visual SLAM in human populated environments: exploring the trade-off between accuracy and speed of YOLO and mask R-CNN. In: 19thInternational Conference on Advanced Robotics, Piscataway, USA. IEEE (2019)

    Google Scholar 

  19. Dai, W.C., Zhang, Y., Li, P., et al.: RGB-D SLAM in dynamic environments using point correlations. IEEE Trans. Pattern Anal. Mach. Intell. 44, 373–389 (2020)

    Article  Google Scholar 

  20. Barber, B.C., Dobkin, P.D., Huhdanpaa, H.: The Quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996). https://doi.org/10.1145/235815.235821

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, S.Q., Fan, G.H., Bai, L.L., et al.: MGC-VSLAM: a meshingbased and geometric constraint VSLAM for dynamic indoor environments. IEEE Access 8, 81007–81021 (2020)

    Article  Google Scholar 

  22. Sun, L., Wei, J., Su, S., et al.: SOLO-SLAM: a parallel semantic SLAM algorithm for dynamic scenes. Sensors 22(18), 6977 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Project of China West Normal University under Grant 17YC046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyong Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, J., Feng, Z., Tang, J. (2023). Visual SLAM Algorithm Based on Target Detection and Direct Geometric Constraints in Dynamic Environments. In: Yongtian, W., Lifang, W. (eds) Image and Graphics Technologies and Applications. IGTA 2023. Communications in Computer and Information Science, vol 1910. Springer, Singapore. https://doi.org/10.1007/978-981-99-7549-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7549-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7548-8

  • Online ISBN: 978-981-99-7549-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics