Skip to main content

A Optical Flow-Based Fight Behavior Detection Method for Campus Scene

  • Conference paper
  • First Online:
Image and Graphics Technologies and Applications (IGTA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1910))

Included in the following conference series:

Abstract

Campuses contain a large number of facilities that must all be monitored to ensure security. However, most of the existing video surveillance needs to be watched by people, and it is impossible to realize the automatic early warning of some dangerous situations. In this paper, a video-based action detection method is proposed for high-frequency student fight on campus, which uses an optical flow algorithm to perform coarse positioning of the area where fight actions may occur and uses the transformer network to identify the action category of the region of interest. In addition, this paper builds a dataset of fight recognition in middle school campuses for model training, validation and testing. The experimental results show that the method proposed in this paper can locate fight actions relatively accurately and provide real-time early warning.

Supported by China Postdoctoral Science Foundation (Grant No. 2022M721893).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, Y.: Research on the design of smart campus system based on big data and internet of things. China Computer and Communication (2019)

    Google Scholar 

  2. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: Proceedings of the International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  3. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. Computer Science (2012)

    Google Scholar 

  4. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Zisserman, A.: The kinetics human action video dataset (2017)

    Google Scholar 

  5. Xu, H., Das, A., Saenko, K.: R-c3d: region convolutional 3d network for temporal activity detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp.5794–5803 (2017)

    Google Scholar 

  6. Chao, Y.W., Vijayanarasimhan, S., Seybold, B., Ross, D.A., Deng, J., Sukthankar, R.: Rethinking the faster R-CNN architecture for temporal action localization. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1130–1139 (2018)

    Google Scholar 

  7. Long, F., Yao, T., Qiu, Z., Tian, X., Luo, J., Mei, T.: Gaussian temporal awareness networks for action localization. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 344–353 (2019)

    Google Scholar 

  8. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. 103(1), 60–79 (2013)

    Article  MathSciNet  Google Scholar 

  9. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: 2013 IEEE International Conference on Computer Vision (2014)

    Google Scholar 

  10. Akila, K., Chitrakala, S.: Discriminative human action recognition using hoi descriptor and key poses. In: 2014 International Conference on Science Engineering and Management Research, pp. 1–6 (2014)

    Google Scholar 

  11. Wang, X., Chen, D., Feng, H., Yang, T., Bo, H.U.: Action recognition based on object detection and dense trajectories. J. Fudan Univ. (Nat. Sci.) (2016)

    Google Scholar 

  12. Min, J., Kasturi, R.: Activity recognition based on multiple motion trajectories. In: Proceedings of the 17th International Conference on Pattern Recognition 2004, ICPR 2004 (2004)

    Google Scholar 

  13. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3d skeletons as points in a lie group. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 588–595 (2014)

    Google Scholar 

  14. Wang, H., et al.: Understanding the robustness of skeleton-based action recognition under adversarial attack. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14651–14660 (2021)

    Google Scholar 

  15. Devanne, M., Wannous, H., Berretti, S., Pala, P., Daoudi, M., Del Bimbo, A.: 3-d human action recognition by shape analysis of motion trajectories on Riemannian manifold. IEEE Trans. Cybern. 45(7), 1340–1352 (2015)

    Article  Google Scholar 

  16. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1110–1118 (2015)

    Google Scholar 

  17. Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., Zheng, N.: View adaptive neural networks for high performance skeleton-based human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1963–1978 (2019)

    Article  Google Scholar 

  18. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with directed graph neural networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7904–7913 (2019)

    Google Scholar 

  19. Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., Lu, H.: Skeleton-based action recognition with shift graph convolutional network. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 180–189 (2020)

    Google Scholar 

  20. Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying graph convolutions for skeleton-based action recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 140–149 (2020)

    Google Scholar 

  21. Zhang, X., Xu, C., Tao, D.: Context aware graph convolution for skeleton-based action recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14321–14330 (2020)

    Google Scholar 

  22. Zhang, P., Lan, C., Zeng, W., Xing, J., Xue, J., Zheng, N.: Semantics-guided neural networks for efficient skeleton-based human action recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1109–1118 (2020)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, vol. 1 (2014)

    Google Scholar 

  24. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1933–1941 (2016)

    Google Scholar 

  25. Carreira, J., Zisserman, A: Quo vadis, action recognition? a new model and the kinetics dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4733 (2017)

    Google Scholar 

  26. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6201–6210 (2019)

    Google Scholar 

  27. Graham, W.T., Fergus, R., Lecun, Y., Bregler, C.: Convolutional learning of spatio-temporal features. In: European Conference on Computer Vision (2010)

    Google Scholar 

  28. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4489–4497 (2015)

    Google Scholar 

  29. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5534–5542 (2017)

    Google Scholar 

  30. Lucas, B.D.: Generalized Image Matching by the Method of Differences. Carnegie Mellon University (1985)

    Google Scholar 

  31. Sharma, S., Kiros, R., Salakhutdinov, R.: Action recognition using visual attention (2015)

    Google Scholar 

  32. Dai, C., Liu, X., Lai, J.: Human action recognition using two-stream attention based LSTM networks. Appl. Soft Comput. 86, 105820 (2020)

    Article  Google Scholar 

  33. Liu, Z., et al.: Video swin transformer. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3192–3201 (2022)

    Google Scholar 

  34. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  35. Authors, P.: Paddledetection, object detection and instance segmentation toolkit based on paddlepaddle. https://github.com/PaddlePaddle/PaddleDetection (2019)

  36. Yun, S., Oh, S.J., Heo, B., Han, D., Kim, J.: Videomix: Rethinking data augmentation for video classification (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, S., Li, Y., Wang, S. (2023). A Optical Flow-Based Fight Behavior Detection Method for Campus Scene. In: Yongtian, W., Lifang, W. (eds) Image and Graphics Technologies and Applications. IGTA 2023. Communications in Computer and Information Science, vol 1910. Springer, Singapore. https://doi.org/10.1007/978-981-99-7549-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7549-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7548-8

  • Online ISBN: 978-981-99-7549-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics