Advertisement

What Action Comprehension Tells Us About Meaning Interpretation

  • Tzu-Wei Hung
Conference paper

Abstract

This chapter defends the view that the functional mechanisms underlying the capacity of understanding the means-end structure in action are necessary and in some cases sufficient for the capacity of understanding the symbol-referent relationship in language. This chapter first examines the relationship between action and speech and cognitive requirements that are needed by symbol-referent mapping but not means-end mapping. It further explores the mechanisms that are indispensable for means-end mapping and investigates whether they are sufficient to explain symbol-referent mapping at the most basic level. Finally, it describes how this analysis is consistent with data in both animal communication and in children with and without semantic pragmatic language disorder.

Keywords

Joint Attention Motor Command Instrumental Action Rett Syndrome Efference Copy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrahamsen, E. P. and Mitchell, J. R. (1990). Communication and sensorimotor functioning in children with autism. Journal of Autism and Developmental Disorders, 20 (1), 75–85.Google Scholar
  2. Addessi, E., Crescimbene, L., & Visalberghi, E. (2007). Do capuchin monkeys (Cebus apella) use tokens as symbols? Proceedings of the Royal Society of London B, 274, 2709–2715.CrossRefGoogle Scholar
  3. Brass, M., Schmitt, R. M., Spengler, S., & Gergely, G. (2007). Investigating action understanding: Inferential processes versus action simulation. Current Biology, 17, 2117–2121.CrossRefGoogle Scholar
  4. Byrne, R. W. (2006). Parsing behaviour. A mundane origin for an extraordinary ability? In N. Enfield & S. Levinson (Eds.), The roots of human sociality (pp. 478–505). New York: Berg.Google Scholar
  5. Carpendale, J. I. M., & Lewis, C. (2008). Mirroring cannot account for understanding action. Behavioral and Brain Sciences, 31, 23–24.CrossRefGoogle Scholar
  6. Cass, H., Reilly, S., Owen, L., Wisbeach, A., Weekes, L., Slonims, V., & Charman, T. (2003). Findings from a multidisciplinary clinical case series of females with Rett syndrome. Developmental Medicine and Child Neurology, 45(5), 325–337.CrossRefGoogle Scholar
  7. Csibra, G. (2007). Action mirroring and action interpretation: An alternative account. In P. Haggard, Y. Rosetti, & M. Kawato, (Eds.), Sensorimotor foundations of higher cognition: Vol. 12. Attention and performance (pp. 435–459). Oxford: Oxford University Press.Google Scholar
  8. Estes, K. G., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2006). Can infants map meaning to newly segmented words? Statistical segmentation and word learning. Psychological Science, 18(3), 254–260.CrossRefGoogle Scholar
  9. Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493–501.CrossRefGoogle Scholar
  10. Garrod, S., & Pickering, M. J. (2008). Shared circuits in language and communication. Behavioural and Brain Sciences, 31, 26–27.CrossRefGoogle Scholar
  11. Gergely, G., & Csibra, G. (2003). Teleological reasoning in infancy: The naïve theory of rational action. Trends in Cognitive Sciences, 7, 287–292CrossRefGoogle Scholar
  12. Henis, E. A., & Levinson, S. E. (1995). Language as part of sensorimotor behavior. Proc. AAAI Symposium (AAAI Technical Report FS-95–05). Cambridge, MA: Nov.Google Scholar
  13. Hurley, S. (2006). Active perception and perceiving action. In T. Gendler & J. Hawthorne (Eds.), Perceptual experience (pp. 205–259). Oxford: Oxford University Press.CrossRefGoogle Scholar
  14. Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mind reading. Behavioral and Brain Sciences, 31, 1–22.CrossRefGoogle Scholar
  15. Irie-Sugimoto, N., Kobayashi, T., Sato, T., & Hasegawa, T. (2008). Evidence of means-end behavior in Asian elephants (Elephas maximus). Animal Cognition, 11(2), 359–365.CrossRefGoogle Scholar
  16. Kiverstein, J., & Clark, A. (2008). Bootstrapping the mind. Behavioural and Brain Sciences, 31, 41–52.CrossRefGoogle Scholar
  17. Knott, A. (2012). Sensorimotor cognition and natural language syntax. Cambridge: MIT Press.Google Scholar
  18. Liebal, K., Behne, T., Carpenter, M., & Tomasello, M. (2009). Infants use shared experience to interpret pointing gestures. Developmental Science, 12, 264–271.CrossRefGoogle Scholar
  19. Linden, E. (2002). The octopus and the orangutan: More tales of animal intrigue, intelligence and ingenuity. New York: Plume.Google Scholar
  20. Millikan, R. G. (2009). Biosemantics. In B. P. McLaughlin & A. Beckerman (Eds.), The Oxford handbook of philosophy of mind. Oxford: Oxford University Press.Google Scholar
  21. Moore, R. (2013). Imitation and conventional communication. Biology & Philosophy, 28(3), 481–500. doi:10.1007/s10539–012-9349–8.CrossRefGoogle Scholar
  22. Over, H., & Gattis, M. (2010). Verbal imitation is based on intention understanding. Cognitive Development, 25, 46–55.CrossRefGoogle Scholar
  23. Preston, S. D. (2008). Putting the subjective back into intersubjectivity: The importance of person specific, distributed, neural representations in perception-action mechanisms. Behavioural and Brain Sciences, 31, 36–37.CrossRefGoogle Scholar
  24. Prior, M., & Ozonoff, S. (2007). Psychological factors in autism. In F. R. Volkmar (Ed.), Autism and pervasive developmental disorders (pp. 69–128). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Pulvermüller, F., & Fadiga, L. (2010). Active perception: Sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience, 11, 351–360.CrossRefGoogle Scholar
  26. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefGoogle Scholar
  27. Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264–274.CrossRefGoogle Scholar
  28. Tincoff, R., & Jusczyk, P. W. (2012). Six-month-olds comprehend words that refer to parts of the body. Infancy, 17, 432–444. doi:10.1111/j.1532–7078.2011.00084.x.CrossRefGoogle Scholar
  29. Tomasello, M., Carpenter, M., & Liszkowski, U. (2007). A new look at infant pointing. Child Development, 78(3), 705–722.CrossRefGoogle Scholar
  30. Uithol, S., van Rooij, I., Bekkering, H., & Haselager, P. (2011). What do mirror neurons mirror? Philosophical Psychology, 24(5), 1–17.CrossRefGoogle Scholar
  31. Willatts, P. (1999). Development of means-end behavior in young infants: Pulling a support to retrieve a distant object. Developmental Psychology, 35(3), 651–667.CrossRefGoogle Scholar
  32. Wolpert, D., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London B, 358(1431), 593–602.CrossRefGoogle Scholar
  33. Woodyatt, G., & Ozanne, A. (1992). Communication abilities and Rett syndrome. Journal of Autism and Developmental Disorders, 22(2), 155–173.CrossRefGoogle Scholar
  34. Yocom, A. M., & Boysen, S. T. (2010). Capuchins (Cebus apella) can solve a means-end problem. Journal of Comparative Psychology, 124(3), 271–277.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.Institute of European and American StudiesAcademia SinicaTaipeiTaiwan

Personalised recommendations