The Use of Carbon Footprint in the Wine Sector: Methodological Assumptions

  • Pedro Villanueva-ReyEmail author
  • Ian Vázquez-Rowe
  • Mª Teresa Moreira
  • Gumersindo Feijoo
Part of the EcoProduction book series (ECOPROD)


Wine production is an important economic sector in many countries worldwide. In addition, its sales and consumption are steadily augmenting on an annual basis. This has increased the interest by stakeholders and consumers in the environmental sustainability of wine production practices. Despite the wide range of environmental dimensions that are monitored through environmental management tools, worldwide concerns related to greenhouse gas emissions and their effect on global warming have boosted the analysis of a single score indicator to monitor these emissions: carbon footprint (CF). In fact, due to the important consequences that climate change is expected to have on wine appellations and regions, CF has proliferated in this sector in recent years. The aim of this study is to provide a critical review on the application of CF to the wine sector based on peer-reviewed publications, focusing on the controversial methodological assumptions and the level of granularity of the life cycle inventory. Finally, a series of potential advancements in the application of CF to the wine sector will be assessed and discussed.


LCA Life Cycle Inventory Vinification Viticulture Wine production 


  1. ADEME (2010) Guide méthodologique version 6.1 du Bilan Carbone—Objectifs et principes de comptabilisationGoogle Scholar
  2. Anderson K, Findlay C, Fuentes S, Tyerman S (2008) Viticulture, wine and climate change. Garnaut climate change review. University of Adelaide, Australia.$File/01-H%20Viticulture.pdf. Accessed on December 2012
  3. Aranda A, Zabalza I, Scarpellini S (2005) Economic and environmental analysis of the wine bottle production in Spain by means of life cycle assessment. Int J Agric Res Gov Ecol 4:178–191. doi: 10.1504/IJARGE.2005.007199 Google Scholar
  4. Ardente F, Beccali G, Cellura M, Marvuglia A (2006) POEMS: a case study of an Italian wine-producing firm. Environ Manage 38:350–364CrossRefGoogle Scholar
  5. Barry MT (2011) Life cycle assessment and the New Zealand wine industry: a tool to support continuous environmental improvement. M.Sc. Dissertation. Massey University, Wellington, NZGoogle Scholar
  6. Benedetto G (2013) The environmental impact of a Sardinian wine by partial life cycle assessment. Wine Econ Policy 2:33–41. doi: 10.1016/j.wep.2013.05.003 CrossRefGoogle Scholar
  7. Benedetto G, Rugani B, Vázquez-Rowe I (2014) Rebound effects due to economic choices when assessing the environmental sustainability of wine. Food Policy. Under reviewGoogle Scholar
  8. Bosco S, Di Bene C, Galli M et al (2011) Greenhouse gas emissions in the agricultural phase of wine production in the Maremma rural district in Tuscany, Italy. Ital J Agron 6:93–100. doi: 10.4081/ija.2011.e15 Google Scholar
  9. Brentrup F, Küsters J, Lammel J, Kuhlmann H (2000) Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int J Life Cycle Assess 5:349–357. doi: 10.1007/BF02978670 CrossRefGoogle Scholar
  10. BSI (2011) PAS 2050: 2011. Specification for the assessment of life cycle greenhouse gas emissions of goods and services. British Standards InstitutionGoogle Scholar
  11. Carballo-Penela A, García-Negro MC, Doménech Quesada JL (2009) A methodological proposal for corporate carbon footprint and its application to a wine-producing company in Galicia, Spain. Sustainability 1:302–318Google Scholar
  12. Cimino M, Marcelloni F (2012) Enabling traceability in the wine supply chain. In: Anastasi G, Bellini E, Di Nitto E, Ghezzi C, Tanca L, Zimeo E (eds) Methodologies and technologies for networked enterprises, vol 7200, pp 397–412. doi: 10.1007/978-3-642-31739-2_20
  13. Colman T, Päster P (2009) Red, white and “green”: the cost of carbon in the global wine trade. J Wine Resour 20:15–26. doi: 10.1080/09571260902978493 CrossRefGoogle Scholar
  14. Comandaru IM, Bârjoveanu G, Peiu N, Ene SA, Teodosiu C (2012) Life cycle assessment of wine: focus on water use impact assessment. Environ Eng Manag J 11:533–543Google Scholar
  15. ecoinvent® (2013) An introduction to the new features and data.
  16. EMEP-Corinair (2006) EMEP/EEA air pollutant emission inventory guidebook, 2006. EEAGoogle Scholar
  17. EMEP-Corinair (2009) EMEP/EEA air pollutant emission inventory guidebook, 2009. EEAGoogle Scholar
  18. European Commission (2007) Council regulation on organic production and labelling of organic products and repealing regulation (EEC) No 2092/91 (EC) No 834/2007 of 28 JuneGoogle Scholar
  19. European Commission (2008) Council regulation laying down detailed rule for the Implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control (EC) No 889/2008 of 5 SeptemberGoogle Scholar
  20. European Commission (2012) Amending regulation (EC) No 889/2008 laying down detailed rules for the implementation of council regulation (EC) No 834/2007, as regards detailed rules on organic wine. (EC) No 203/2012 of 8 MarchGoogle Scholar
  21. Frischknecht R, Jungbluth N, Althaus HJ, et al (2007) Implementation of life cycle impact assessment methods. ecoinvent® report No. 3, v2.0. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  22. Gabzdylova B, Raffensperger JF, Castka P (2009) Sustainability in the New Zealand wine industry: drivers, stakeholders and practices. J Clean Prod 17:992–998. doi: 10.1016/j.jclepro.2009.02.015 CrossRefGoogle Scholar
  23. García García J, Martínez-Cutillas A, Romero P (2012) Financial analysis of wine grape production using regulated deficit irrigation and partial-root zone drying strategies. Irrigation Sci 30:179–188. doi: 10.1007/s00271-011-0274-4 CrossRefGoogle Scholar
  24. Gazulla C, Raugei M, Fullana-i-Palmer P (2010) Taking a life cycle look at crianza wine production in Spain: where are the bottlenecks? Int J Life Cycle Assess 15:330–337. doi: 10.1007/s11367-010-0173-6 CrossRefGoogle Scholar
  25. Ghidossi R, Poupot C, Thibon C et al (2012) The influence of packaging on wine conservation. Food Control 23:302–311. doi: 10.1016/j.foodcont.2011.06.003 CrossRefGoogle Scholar
  26. Gómez JA, Llewellyn C, Basch G, Sutton PB, Dyson JS, Jones CA (2011) The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use Manage 27:504–512. doi: 10.1111/j.1475-2743.2011.00367.x
  27. Gonzales A, Klimchuk A, Martin M (2006) Life cycle assessment of wine production process. Finding relevant process efficiency and comparison to eco-wine production. Royal Institue of Technology, StockholmGoogle Scholar
  28. González-García S, Silva FJ, Moreira MT et al (2011) Combined application of LCA and eco-design for the sustainable production of wood boxes for wine bottles storage. Int J Life Cycle Assess 16:224–237. doi: 10.1007/s11367-011-0261-2 CrossRefGoogle Scholar
  29. Hertwich G (2005) Consumption and the rebound effect. An industrial ecology perspective. J Ind Ecol 9:85–98. doi: 10.1162/1088198054084635 CrossRefGoogle Scholar
  30. Initiative GGP (2011) Product life cycle accounting and reporting standard. 150Google Scholar
  31. IPCC (2006) IPCC guidelines for national greenhouse gas inventories, vol 4: Agriculture, forestry and other land useGoogle Scholar
  32. IPCC (2007) Climate change 2007—the physical science basis. Contribution of Working Group I to the 4th IPCC Assessment ReportGoogle Scholar
  33. ISO (2006a) ISO 14040. Environmental management—life cycle assessment—principles and framework. International Organization for StandardizationGoogle Scholar
  34. ISO (2006b) ISO 14044. Environmental management—life cycle assessment—requirements and guidelines. International Organization for StandardizationGoogle Scholar
  35. ISO (2013) ISO 14067—Carbon footprint of products—requirements and guidelines for quantification and communication.
  36. Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73:319–343. doi: 10.1007/s10584-005-4704-2 CrossRefGoogle Scholar
  37. Kavargiris SE, Mamolos AP, Tsatsarelis CA et al (2009) Energy resources’ utilization in organic and conventional vineyards: energy flow, greenhouse gas emissions and biofuel production. Biomass Bioenerg 33:1239–1250. doi: 10.1016/j.biombioe.2009.05.006 CrossRefGoogle Scholar
  38. Kounina A, Tatti E, Humbert S, Pfister R, Pike A, Ménard JF, Loerincik Y, Jolliet O (2012) The importance of considering product loss rates in life cycle assessment: the example of closure systems for bottled wine. Sustainability 4:2673–2706. doi: 10.3390/su4102673 Google Scholar
  39. Laurent A, Olsen SI, Hauschild MZ (2012) Limitations of carbon footprint as indicator of environmental sustainability. Environ Sci Technol 46:4100–4108. doi: 10.1021/es204163f CrossRefGoogle Scholar
  40. Lenten LJA, Mossa I (1999) Modelling the trend and seasonality in the consumption of alcoholic beverages in the United Kingdom. Appl Econ 31:795–804. doi: 10.1080/000368499323760 CrossRefGoogle Scholar
  41. Lockshin L, Mueller S, Louviere J et al (2009) Development of a new method to measure how consumers choose wine. Wine Ind J 24:37–43Google Scholar
  42. Lotter DW (2003) Organic agriculture. J Sustain Agr 21:59–128. doi: 10.1300/J064v21n04_06 CrossRefGoogle Scholar
  43. Marvuglia A, Benetto E, Rege S, Jury C (2013) Modelling approaches for consequential life cycle assessment (C-LCA) of bioenergy: critical review and proposed framework for biogas production. Renew Sust Energ Rev 25:768–781. doi: 10.1016/j.rser.2013.04.031 CrossRefGoogle Scholar
  44. Masson P (2009) Biodinámica: guía práctica para agricultores y aficionados. Editorial Fertilidad de la Tierra, Estella, NavarraGoogle Scholar
  45. McGovern PE, Fleming SJ, Katz SH (1996) The origins and ancient history of wine. Gordon and Breach Publishers, AmsterdamGoogle Scholar
  46. Mira de Orduña R (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43:1844–1855. doi: 10.1016/j.foodres.2010.05.001 CrossRefGoogle Scholar
  47. Moreira MT, Vázquez-Rowe I, Villanueva-Rey P, Feijoo G (2011) The importance of timeline analysis in viticulture. A case study based on Rías Baixas production area (NW Spain). Proceeding from LCA XI Instruments for Green Futures MarketsGoogle Scholar
  48. Nemecek T, Kägi T (2007) Life cycle inventories of agricultural production systems. ecoinvent® report No. 15, 353 pagesGoogle Scholar
  49. Neto B, Dias AC, Machado M (2013) Life cycle assessment of the supply chain of a Portuguese wine: from viticulture to distribution. Int J Life Cycle Assess 1–13. doi: 10.1007/s11367-012-0518-4
  50. Niccolucci V, Galli A, Kitzes J et al (2008) Ecological Footprint analysis applied to the production of two Italian wines. Agr Ecosyst Environ 128:162–166. doi: 10.1016/j.agee.2008.05.015 CrossRefGoogle Scholar
  51. Nicholls CI, Parrella MP, Altieri MA (2001) Reducing the abundance of leafhoppers and thrips in a Northern California organic vineyard through maintenance of full season floral diversity with summer cover crops. Agr Forest Entomol 2:107–113. doi: 10.1046/j.1461-9563.2000.00054.x CrossRefGoogle Scholar
  52. Notarnicola B, Tassielli G, Nicoletti M (2003) LCA of wine production. In: Mattsonn B, Sonesson U (eds) Environmentally-friendly food processing. Woodhead Publishing Ltd., Cambridge, pp 306–326CrossRefGoogle Scholar
  53. Notarnicola B, Tassielli G, Settanni E (2010) Including more technology in the production of a quality wine: the importance of functional unit. In: Proceedings of the 7th international conference on LCA in the agri-food sector, vol 1, pp 235–240Google Scholar
  54. OIV (2011) General principles of the OIV greenhouse gas accounting protocol (GHGAP) for the vine and wine sector. Resolution OIV-CST 431-2011. General Assembly of Member States, Montpellier, FranceGoogle Scholar
  55. OIV (2013) International Organisation of Vine and Wine. Statistical report on world vitivinicultureGoogle Scholar
  56. Pattara C, Raggi A, Cichelli A (2012) Life cycle assessment and carbon footprint in the wine supply-chain. Environ Manage 49:1247–1258. doi: 10.1007/s00267-012-9844-3 CrossRefGoogle Scholar
  57. Petti L, Ardente F, Bosco S, De Camillis C, Masotti P, Pattara C, Raggi A, Tassielli G (2010) State of the art of life cycle assessment (LCA) in the wine industry. In: Proceedings of 7th international conference on life cycle assessment in the agri-food sector, Bari, Italy, pp 493–498Google Scholar
  58. Pizzigallo ACI, Granai C, Borsa S (2008) The joint use of LCA and emergy evaluation for the analysis of two Italian wine farms. J Environ Manage 86:396–406. doi: 10.1016/j.jenvman.2006.04.020 CrossRefGoogle Scholar
  59. Point E, Tyedmers P, Naugler C (2012) Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada. J Clean Prod 27:11–20. doi: 10.1016/j.jclepro.2011.12.035 CrossRefGoogle Scholar
  60. Ramos S, Vázquez-Rowe I, Artetxe I et al (2011) Environmental assessment of the Atlantic mackerel (Scomber scombrus) season in the Basque Country. Increasing the timeline delimitation in fishery LCA studies. Int J Life Cycle Assess 16:599–610. doi: 10.1007/s11367-011-0304-8 CrossRefGoogle Scholar
  61. Ridoutt B, Eady S, Sellahewa J, Simons L, Bektash R (2009) Water footprinting at the product brand level: case study and future challenges. J Clean Prod 17:1228–1235. doi: 10.1016/j.clepro.2009.03.002 CrossRefGoogle Scholar
  62. Rives J, Fernández-Rodríguez I, Rieradevall J, Gabarrell X (2011) Environmental analysis of the production of natural cork stoppers in Southern Europe (Catalonia e Spain). J Clean Prod 19:259–271. doi: 10.1016/j.clepro/2010.01.007 CrossRefGoogle Scholar
  63. Roux EG, Peisach M, Pineda CA, Pougnet MAB (1988) The toxic effect of aluminium in vines. J Radioanal Nucl Ch Ar 120:97–104. doi: 10.1007/BF02037855 CrossRefGoogle Scholar
  64. Rugani B, Vázquez-Rowe I, Benedetto G, Benetto E (2013) A comprehensive review of carbon footprint analysis as an extended environmental indicator in the wine sector. J Clean Prod 54:61–77. doi: 10.1016/j.jclepro.2013.04.036 CrossRefGoogle Scholar
  65. Ruggieri L, Cadena E, Martínez-Blanco J et al (2009) Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. J Cle Prod 17:830–838. doi: 10.1016/j.jclepro.2008.12.005 CrossRefGoogle Scholar
  66. Smyth M, Russell J (2009) From graft to bottle—analysis of energy use in viticulture and wine production and the potential for solar renewable technologies. Renew Sust Energ Rev 13:1985–1993. doi: 10.1016/j.rser/2009.01.007 CrossRefGoogle Scholar
  67. Sorrell S, Dimitropoulos J (2008) The rebound effect: microeconomic definitions, limitations and extensions. Ecol Econ 65:636–649. doi: 10.1016/j.ecolecon/2007.08.013 CrossRefGoogle Scholar
  68. Tate AB (2001) Global warming’s impact on wine. J Wine Res 12:95–109. doi: 10.1080/09571260120095012 CrossRefGoogle Scholar
  69. Team CW, Pachauri RK, Reisinger A (2007) IPCC, 2007: Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. p 104Google Scholar
  70. Udo de Haes HA (2006) Life-cycle assessment and the use of broad indicators. J Ind Ecol 10:5–7. doi: 10.1162/jiec.2006.10.3.5 CrossRefGoogle Scholar
  71. UNEP (2011) Global guidance principles for life cycle assessment databases a basis for greener processes and products. Shonan guidance principles. Life Cycle Initiative, SETAC and United Nations Environment ProgrammeGoogle Scholar
  72. Vázquez-Rowe I, Moreira MT, Feijoo G (2012a) Environmental assessment of frozen common octopus (Octopus vulgaris) captured by Spanish fishing vessels in the Mauritanian EEZ. Marine Policy 36:180–188. doi: 10.1016/j.marpol.2011.05.002 CrossRefGoogle Scholar
  73. Vázquez-Rowe I, Villanueva-Rey P, Iribarren D et al (2012b) Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rías Baixas appellation (NW Spain). J Clean Prod 27:92–102. doi: 10.1016/j.jclepro.2011.12.039 CrossRefGoogle Scholar
  74. Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2012c) Environmental analysis of Ribeiro wine from a timeline perspective: harvest year matters when reporting environmental impacts. J Environ Manage 98:73–83. doi: 10.1016/j.jenvman.2011.12.009 CrossRefGoogle Scholar
  75. Vázquez-Rowe I, Rugani B, Benetto E (2013a) Tapping carbon footprint variations in the European wine sector. J Cleaner Prod 43:146–155. doi: 10.1016/j.jclepro.2012.12.036 CrossRefGoogle Scholar
  76. Vázquez-Rowe I, Marvuglia A, Rege S, Benetto E (2013b) Applying consequential LCA to support energy policy: land use change effects of bioenergy production. Sci Total Environ. doi: 10.1016/j.scitotenv.2013.10.097 Google Scholar
  77. Vázquez-Rowe I, Rege S, Marvuglia A, Thénie J, Haurie A, Benetto E (2013c) Application of three independent consequential LCA approaches to the agricultural sector in Luxembourg. Int J Life Cycle Assess 18:1593–1604. doi: 10.1007/s11367-013-0604-2 Google Scholar
  78. Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2013d) The role of consumer purchase and post-purchase decision-making in sustainable seafood consumption. A Spanish case study using carbon footprinting. Food Policy 41:94–102. doi: 10.1016/j.foodpol.2013.04.009 CrossRefGoogle Scholar
  79. Vázquez-Rowe I, Villanueva-Rey P, Mallo J, De la Cerda JJ, Moreira MT, Feijoo G (2013e) Carbon footprint of a multi-ingredient seafood product from a business-to business perspective. J Clean Prod 44:200–210. doi: 10.1016/j.jclepro.2012.11.049 CrossRefGoogle Scholar
  80. Vázquez-Rowe I, Villanueva-Rey P, Hospido A, Moreira MT, Feijoo G (2014) Life cycle assessment of European pilchard (Sardina pilchardus) consumption. A case study for Galicia (NW Spain). Science of the Total Environment. Accepted for publicationGoogle Scholar
  81. Venkat K (2012) Comparison of twelve organic and conventional farming systems: a life cycle greenhouse gas emissions perspective. J Sust Agr 36:620–649. doi: 10.1080/10440046.2012.672378 CrossRefGoogle Scholar
  82. Villanueva-Rey P, Vázquez-Rowe I, Moreira MT, Feijoo G (2013) Comparative life cycle assessment in the wine sector: biodynamic vs. conventional viticulture activities in NW Spain. J Clean Prod. doi: 10.1016/j.jclepro.2013.08.026 Google Scholar
  83. Weber CL, Matthews HS (2008) Food-miles and the relative climate impacts of food choices in the United States. Environ Sci Technol 42:3508–3513. doi: 10.1021/es702969f CrossRefGoogle Scholar
  84. Weidema BP (2003) Market information in life cycle assessment. Environmental Project No. 863. Danish Environmental Protection Agency, Copenhagen, DK. Accessed on December 2012
  85. Weidema BP, Thrane M, Christensen P, Schmidt J, Løkke S (2008) Carbon footprint—a catalyst for life cycle assessment? J Ind Ecol 12:3–6. doi: 10.1111/j.1530-9290.2008.00005.x CrossRefGoogle Scholar
  86. Ziegler F, Winther U, Skontorp-Hognes E, Emanuelsson A, Sund V, Ellingsen H (2013) The carbon footprint of Norwegian seafood products. J Ind Ecol 17:103–116. doi: 10.1111/j.1530-9290.2012.00485.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  • Pedro Villanueva-Rey
    • 1
    Email author
  • Ian Vázquez-Rowe
    • 1
    • 2
  • Mª Teresa Moreira
    • 1
  • Gumersindo Feijoo
    • 1
  1. 1.Department of Chemical Engineering, Institute of TechnologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Peruvian LCA Network, Department of EngineeringPontificia Católica Universidad del Perú (PUCP)LimaPeru

Personalised recommendations