Skip to main content

Ultrasonic Elastography and Breast Imaging

  • Chapter
  • First Online:
Advances in Medical Diagnostic Technology

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

  • 1238 Accesses

Abstract

The elastography is based on the principles: (1) Tissue compression produces strain (displacement) within the tissue, and (2) this strain is lower in harder tissues than in softer tissues. Therefore, by measuring tissue strain due to compression, tissue stiffness can be estimated. Since malignant breast tissue is generally harder than normal surrounding tissue, tissue hardness observed in elastography becomes the more precise clinical information than manual palpation. The use of quantitative elastography achieves the improvement in breast cancer diagnostic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam SK, Ophir J (1997) Reduction of signal decorrelation from mechanical compression of tissues by temporal stretching: applications to elastography. Ultrasound Med Biol 23:95–105

    Article  Google Scholar 

  • Alam SK, Parker KJ (1995) The butterfly search technique for estimation of blood velocity. Ultrasound Med Biol 21:657–670

    Article  Google Scholar 

  • Alam SK, Ophir J, Konofagou E (1998a) An adaptive strain estimator for elastography. IEEE Trans UFFC 45:461–472

    Article  Google Scholar 

  • Alam SK, Ophir J, Cespedes I (1998b) A deconvolution filter for improvement of time-delay estimation in elastography. IEEE Trans UFFC 45(6):1565–1572

    Article  Google Scholar 

  • Ariel IM, Cleary JB (1987) Breast cancer diagnosis and treatment. McGraw-Hill, New York

    Google Scholar 

  • Cespedes I, Ophir J, Ponnekanti H, Maklad N (1993) Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason Imaging 15:73–88

    Google Scholar 

  • Foster GC, Embree MP, O’Brien WD (1990) Flow velocity profile via time-domain correlation: error analysis and computer simulation. IEEE Trans Ultrason Ferroelec Freq Control 37:164–174

    Article  Google Scholar 

  • Fung YC (1981) Biomechanical properties of living tissues, Chap. 7. Springer, New York

    Google Scholar 

  • Gao L, Parker KJ, Lerner RM, Levinson SF (1996) Imaging of the elastic properties of tissue—a review. Ultrasound Med Biol 22:959–977

    Article  Google Scholar 

  • Garra BS (2011) Tissue elasticity imaging using ultrasound. Appl Radiol 40:24

    Google Scholar 

  • Garra BS, Cespedes EI, Ophir J, Spratt RS, Zuurbier RA, Magnant CM, Penananen MF (1997) Elastography of breast lesions: initial clinical results. Radiology 202:79–86

    Google Scholar 

  • Hoskins P (2010) Elastography, Diagnostic ultrasound physics and equipment, Chap. 15, 2nd edn. Cambridge University Press, Cambridge, pp 196–214

    Google Scholar 

  • Hoskins P, Criton A (2010) Colour flow and tissue imaging. In: Diagnostic ultrasound physics and equipment, 2nd edn. Cambridge University Press, Cambridge, pp 121–141

    Google Scholar 

  • Hoskins PR, Martin K, Thrush A (eds) (2010) Diagnostic ultrasound physics and equipment, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kallel F, Bertrand M (1996) Tissue elasticity reconstruction using linear perturbation method. IEEE Trans Med Imaging 15:299–313

    Article  Google Scholar 

  • Kallel F, Ophir J (1997) A least squares estimator for elastography. Ultrason Imaging 19:195–208

    Article  Google Scholar 

  • Konofagou EE, Ophir J (1998) A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues. Ultrasound Med Biol 24:1183–1199

    Article  Google Scholar 

  • Krouskop TA, Vinson S, Goode B (1987) A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue. J Rehabil Res Dev 24:1–8

    Google Scholar 

  • Krouskop TA, Wheeler TM, Kallel F, Hall T (1998) The elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20:151–159

    Article  Google Scholar 

  • Lerner RM, Parker KJ (1987) Sono-elasticity in ultrasonic tissue characterization and echographic imaging. In: Proceedings of 7th European community workshop, Nijmegen, The Netherlands

    Google Scholar 

  • Lerner RM, Huang SR, Parker KJWD (1990) ‘Sonoelasticity’ images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol 16:231–239

    Article  Google Scholar 

  • Mak AFT, Lai VM, Mow VC (1987) Biphasic indentation of articular cartilage. Part I: theoretical analysis. J Biomech 20:703–714

    Article  Google Scholar 

  • Ophir J, Ce′spedes EI, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134

    Google Scholar 

  • Ophir J, Kallel F, Varghese T, Bertrand M, Cespedes I, Ponnekanti H (1997) Elastography: a systems approach. Ultrasound Med Biol 23(1):89–173 Wiley

    Google Scholar 

  • Ophir J, Alam SK, Garra B, Kallel F, Konofagou E, Krouskop T, Varghese T (1999) Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Instn Mech Engrs Part H: J Eng Med 213:203–233

    Article  Google Scholar 

  • Ophir J, Alam SK, Garra B, Kallel F, konofagou E, krouskop T, Merritt CRB, Righett R, Souchon R, Srinivasan S, Varghese T (2002) Elastography: imaging the elastic properties of soft tissues with ultrasound. J Med Ultrasonics 29(Winter):155–171

    Article  Google Scholar 

  • Postema M (2011) Fundamentals of medical ultrasonics. Spon Press, New York

    Google Scholar 

  • Saada S (1983) Elasticity, theory and applications. Pergamon Press, New York

    Google Scholar 

  • Sarvazyan AP (1993) Shear acoustic properties of soft biological tissues in medical diagnosis. J Acoust Soc Am Proc 125th Meet 93:2329

    Article  Google Scholar 

  • Sarvazyan AP, Skovoroda A, Vucelic D (1991) Utilization of surface acoustic waves and shear acoustic properties for imaging and tissue characterization

    Google Scholar 

  • Sarvazyan AP, Skovoroda AR, Emelianov SY, Fowlkes JB, Pipe JG, Adler RS, Buxton RB, Carson PL (1995) Biophysical bases of elasticity imaging. Acoust Imaging 21:223-240 (Springer, US)

    Google Scholar 

  • Seo JK, Woo EJ (2013) Nonlinear inverse problems in imaging. Wiley, London

    Book  Google Scholar 

  • Sumi C, Suzuki A, Nakayama K (1995) Estimation of shear modulus distribution in soft tissue from strain distribution. IEEE Trans Biomed Eng 42:193–202

    Article  Google Scholar 

  • The Burden of Cancer in Asia, Pfizer Medical Division, 2008

    Google Scholar 

  • Varghese T, Ophir J (1997) A theoretical framework for performance characterization of elastography: the strain filter. IEEE Trans Ultrason Ferroelec Freq Control Appl Muscle Breast vivo Ultrason 44:164–172

    Article  Google Scholar 

  • Walker FW, Trahey EG (1995) A fundamental limit on delay estimation using partially correlated speckle signals. IEEE Trans Ultrason Ferroelec Freq Control 42:301–308

    Article  Google Scholar 

  • Wells PNT, Liang H-D (2011) Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 8:1521–1549

    Article  Google Scholar 

  • Wilson LS, Robinson DE (1982) Ultrasonic measurement of small displacements and deformations of tissue. Ultrason Imaging 4:71–82

    Google Scholar 

  • Yamakoshi Y, Sato J, Sato T (1990) Ultrasonic imaging of internal vibration of soft tissue under forced vibration. IEEE Trans Ultrason Ferroelec Freq Control 37:45–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Mon Myint .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Myint, Y.M., Lai, K.W., Mohamad Salim, M.I., Hum, Y.C., Utama, N.P. (2014). Ultrasonic Elastography and Breast Imaging. In: Advances in Medical Diagnostic Technology. Lecture Notes in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-4585-72-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-72-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-71-2

  • Online ISBN: 978-981-4585-72-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics