Skip to main content

Effective Hand Gesture Classification Approaches

  • Chapter
  • First Online:
Human Computer Interaction Using Hand Gestures

Part of the book series: Cognitive Science and Technology ((CSAT))

Abstract

Hand gestures recognition goals can only be fulfilled when gesture isolation is coupled with an effective feature extraction followed by highly efficient classification. In the context of machine vision, feature extraction and classification can be jointly called pattern recognition in which, previous known patterns are matched with a query gesture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chase, L.D.: Euclidean Distance (2008) http://www.warnercnr.colostate.edu/~ldchase/Melinda's%20Final%20writeup.doc. Accessed Oct. 12, 2013

  2. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. Quantitative biology quantitative methods (2012)

    Google Scholar 

  3. Cantrell, C.D.: Modern Mathematical Methods for Physicists and Engineers. Cambridge University Press (2000)

    Google Scholar 

  4. Abello, J.M., Pardalos, P.M., Resende, M.G.C.: Handbook of Massive Data Sets. Springer (2002)

    Google Scholar 

  5. Tax, D.M.J., Duin, R., De Ridder, D.: Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB. John Wiley and Sons (2004)

    Google Scholar 

  6. Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2(1), 49–55 (1936)

    MATH  MathSciNet  Google Scholar 

  7. Li, T., Zhu, S., Ogihara, M.: Using discriminant analysis for multi-class classification: an experimental investigation. Knowl. Inf. Syst. 10(4): 453–472 (2013)

    Google Scholar 

  8. Li, T., Zhu, S., Ogihara, M.: Using discriminant analysis for multi-class classification: an experimental investigation. Knowl. Inf. Syst. 10(4), 453–472 (2006)

    Google Scholar 

  9. Su, Y., Shan, S., Cao, B., Chen, X., Gao, W.: Multiple fisher classifiers combination for face recognition based on grouping AdaBoosted Gabor features. Proceedings of the British Machine Vision Conference (2005)

    Google Scholar 

  10. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  11. McLachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition. Wiley Interscience (2004)

    Google Scholar 

  12. Hendricks, D.: Analyzing Quantitative Data: An Introduction for Social Researchers, pp. 288–289 (2011)

    Google Scholar 

  13. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 228–233 (2001)

    Article  Google Scholar 

  14. Gupta, S., Jaafar, J., Ahmad, W.F.W.: Static hand gesture recognition using local gabor filter, international symposium on robotics and intelligent Sensors 2012. Procedia Eng. 41, 827–832 (2012)

    Google Scholar 

  15. Khan, A., Farooq, H.: Principal component analysis-linear discriminant analysis feature extractor for pattern recognition. IJCSI Int. J. Comput. Sci. 8(6), p276 (2011)

    Google Scholar 

  16. Suhas, S., Ajay, K., Khanale, P.: Face recognition using principal component analysis and linear discriminant analysis on holistic approach in facial images database. IOSR J. Eng. 2, 15–23 (2012)

    Article  Google Scholar 

  17. Balakrishnama, S., Ganapathiraju, A.: Linear discriminant analysis- a brief tutorial. Institute for Signal and Information Processing http://www.music.mcgill.ca/~ich/classes/mumt611/classifiers/lda_theory.pdf. Accessed Sept. 12, 2013

  18. Khanale, P.B.: Face recognition against variation in pose and background. IEEE International Conference on Electro/Information Technology (2011)

    Google Scholar 

  19. Satonkar S.S., Kurhe A.B., Khanale P.B.: Face recognition methods & its applications. J Emerg. Technol. Appl. Eng., Technol. Sci. (IJ-ETA-ETS) 4(2), 294–297 (2011)

    Google Scholar 

  20. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Prentice Hall (1998)

    Google Scholar 

  21. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data—with application to face recognition. Pattern Recognit. 34(10), 2067–2069 (2001)

    Article  MATH  Google Scholar 

  22. Rosenblatt, F.: The perceptron–a perceiving and recognizing automaton. Report 85–460-1, Cornell Aeronautical Laboratory (1957)

    Google Scholar 

  23. Liou, D.-R., Liou, J.-W., Liou, C.-Y.: Learning Behaviors of Perceptron. iConcept Press (2013)

    Google Scholar 

  24. Mahesh P.: Multiclass approaches for support vector machine based land cover classification. CORR 2008 (2008)

    Google Scholar 

  25. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag, New York (1995)

    Book  MATH  Google Scholar 

  26. Chen, Y.T., Tseng, K.T.: Multiple-angle hand gesture recognition by fusing SVM classifiers, IEEE conference on Automation Science and Engineering, Scottsdale, AZ, USA, pp. 527–530 (2007)

    Google Scholar 

  27. Huang, D-Y., Hu, W-C., Chang, S-H.: Vision-based hand gesture recognition using PCA + Gabor filters and SVM. Fifth international conference on intelligent information hiding and multimedia signal processing (2009)

    Google Scholar 

  28. Bonansea, L.: 3D Hand gesture recognition using a ZCam and an SVM-SMO classifier. Graduate Theses and Dissertations Graduate College, Iowa State University (2009)

    Google Scholar 

  29. Liu, Y., Gan, Z., Sun, Y.: Static Hand Gesture Recognition and its Application based on Support Vector Machines, pp. 517–521 (2008)

    Google Scholar 

  30. Chen, Y-T., Tseng, K-T.: Multiple-angle Hand Gesture Recognition by Fusing SVM Classifiers, pp. 527–530 (2007)

    Google Scholar 

  31. Bonansea, L.: Demonstration video of the 3D gesture recognition system using Zcam and SVM. http://www.youtube.com/watch?v=VsM0a_3I1_Q (2009)

  32. Ye, J., Yao, H., Jiang, F.: Based on HMM and SVM multilayer architecture classifier for Chinese sign language recognition with large vocabulary, pp. 377–380 (2004)

    Google Scholar 

  33. Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many Relevant Features (1998) http://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf. Accessed April 18, 2013

  34. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J Mach. Learn. Res. 2001, 45–66 (2001)

    Google Scholar 

  35. Sassano, M.: Virtual Examples for Text Classification with Support Vector Machines. Fujitsu Laboratories Ltd (2003)

    Google Scholar 

  36. Basu, A., Watters, C., Shepherd, M.: Support vector machines for text categorization. Proceedings of the 36th Hawaii International Conference on System Sciences (2003)

    Google Scholar 

  37. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. In Proceedings of the Seventeenth International Conference on Machine Learning (ICML-00), pp. 287–295 (1998)

    Google Scholar 

  38. Cortes, C., Vapnik, V. N.: Support-Vector Networks, Machine Learning, p. 20 (1995)

    Google Scholar 

  39. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B. P.: Support Vector Machines. Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)

    Google Scholar 

  40. Aizerman, M.A., Braverman, E.M., Rozonoer, L.I.: Theoretical foundations of the potential function method in pattern recognition learning. Autom. Remote Control. 25, 821–837 (1964)

    MathSciNet  Google Scholar 

  41. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Haussler, D (ed.) 5th Annual ACM Workshop on COLT, pp. 144–152 (1992)

    Google Scholar 

  42. Meyer, D., Leisch, F., Hornik, K.: The support vector machine under test, Neurocomputing 55(1–2), 169–186 (2003)

    Article  Google Scholar 

  43. Hsu, C-W, Chang, C-C., Lin, C-J.: A Practical Guide to Support Vector Classification (Technical report). Department of Computer Science and Information Engineering, National Taiwan University (2003)

    Google Scholar 

  44. Duan, K-B., Keerthi, S. S.: Which is the best multiclass SVM method? An empirical study. Proceedings of the Sixth International Workshop on Multiple Classifier Systems. Lecture Notes in Computer Science vol. 3541, p. 278 (2005)

    Google Scholar 

  45. Hsu, C-W., Lin, C-J.: A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks (2002)

    Google Scholar 

  46. Platt, J., Cristiamanini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification. In: Solla, S.A., Leen, T.K., Müller, K-R. (eds.) Advances in Neural Information Processing Systems, pp. 547–553. MIT Press (2000)

    Google Scholar 

  47. Dietterich, T.G., Bakiri, G.B.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2(2), 263–286 (1995)

    MATH  Google Scholar 

  48. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass Kernel-based vector machines. J. Mach. Learn. Res. 2, 265–292 (2001)

    Google Scholar 

  49. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines. Computing Science and Statistics, p. 33 (2001)

    Google Scholar 

  50. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data. J. Am. Stat. Assoc. 99(465), 67–81 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  51. Joachims, T.: Transductive inference for text classification using support vector machines. Proceedings of the 1999 International Conference on Machine Learning (ICML 1999), pp. 200–209 (1999)

    Google Scholar 

  52. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.N.: Support vector regression machines. In Advances in Neural Information Processing Systems 9, NIPS 1996, pp. 155–161 (1997)

    Google Scholar 

  53. Suykens, J.A.K., Vandewalle, J.P.L.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    MathSciNet  Google Scholar 

  54. Ferris, M. C. and Munson, T. S.: Interior-point methods for massive support vector machines. SIAM J Optim. 13(3), 783–804 (2002)

    Article  MathSciNet  Google Scholar 

  55. Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training neural network. Neurocomputing: Algorithms, Architectures and Applications, NATO ASI. Springer-Verlag, Berlin (1990)

    Google Scholar 

  56. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines, IEEE Trans. Neural Netw. 13, 415–425 (2002)

    Article  Google Scholar 

  57. JAMES, G.: Majority vote classifiers: Theory and Applications. Ph. D. Thesis, Department of Statistics, Stanford University, Stanford, CA (1998)

    Google Scholar 

  58. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines Tech. Rep. 1043, Department of Statistics, University of Wisconsin, Madison, (2001)

    Google Scholar 

  59. Schölkopf, B., Smola, A. J.: Learning with Kernels—Support Vector Machines, Regularization, Optimization and Beyond. The MIT Press, Cambridge (2002)

    Google Scholar 

  60. Weston, J., Watkins, C.: Multi-class Support Vector Machines. Royal Holloway, University of London, U. K., Technical Report CSD-TR-98–04 (1998)

    Google Scholar 

  61. Piyush, R.: Kernel Methods and Nonlinear Classification CS5350/6350: Machine Learning (2011)

    Google Scholar 

  62. Berwick, R.: An Idiot’s guide to Support vector machines (SVMs) http://www.web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf‎. Accessed Oct. 15, 2013

  63. Scribe, M.I.J., Thibaux, R.: The kernel trick. Advanced Topics in Learning & Decision Making (2004) http://www.cs.berkeley.edu/~jordan/courses/281B-spring04/lectures/lec3.pdf. Accessed April 18, 2013

  64. Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.-R.: Engineering support vector machine kernels that recognize translation initiation sites. BioInformatics 16(9), 799–807 (2000)

    Article  Google Scholar 

  65. Blankertz, B., Curio, G., Müller, K-R.: Classifying single trial EEG: towards brain computer interfacing. In: Diettrich, T.G., Becker, S., Ghahramani, Z., (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 157–164 (2002)

    Google Scholar 

  66. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1995)

    Google Scholar 

  67. Moody, J., Darken, C.: Fast learning in networks of locally-tuned processing units. Neural Comput. 1(2), 281–294 (1998)

    Article  Google Scholar 

  68. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comp. Syst. Sci. 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  69. Rätsch, G., Mika, S., Schölkopf, B., Müller, K.-R.: Constructing boosting algorithms from SVMs: an application to one-class classification. IEEE Patt. Anal. Mach. Intell. (IEEE PAMI) 24(9), 1184–1199 (2002)

    Article  Google Scholar 

  70. Girosi, F., Jones, M., Poggio, T.: Priors, stabilizers and basis functions: from regularization to radial, tensor and additive splines. Technical Report A.I. Memo No. 1430, Massachusetts Institute of Technology (1993)

    Google Scholar 

  71. Smola, A.J., Schölkopf, B., Müller, K.-R.: The connection between regularization operators and support vector kernels. Neural Netw. 11, 637–649 (1998)

    Article  Google Scholar 

  72. Girosi, F.: An equivalence between sparse approximation and support vector machines. Neural Comput. 10, 1455–1480 (1998)

    Article  Google Scholar 

  73. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99–10, UC Santa Cruz (1999)

    Google Scholar 

  74. Watkins, C.: Dynamic alignment kernels. In: Smola, A.J., Bartlett, P.L., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 39–50 (2000)

    Google Scholar 

  75. Schölkopf, B.: The kernel trick for distances. In: Leen, T.K., Diettrich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13. MIT Press (2001)

    Google Scholar 

  76. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application to face detection. In Proceedings CVPR’97 (1997)

    Google Scholar 

  77. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds) Advances in Kernel Methods—Support Vector Learning, pp. 185–208 (1999)

    Google Scholar 

  78. Ralaivola, L., d’Alché Buc, F.: Incremental support vector machine learning: a local approach. Lect. Notes Comput. Sci. 2130, 322–329 (2001)

    Article  Google Scholar 

  79. Schölkopf, B., Burges, C.J.C., Vapnik, V.N.: Extracting support data for a given task. In: Fayyad, U.M., Uthurusamy, R. (eds.) Proceedings, First International Conference on Knowledge Discovery & Data Mining (1995)

    Google Scholar 

  80. Schölkopf, B., Smola, A., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12, 1207–1245 (2000)

    Article  Google Scholar 

  81. Schölkopf, B., Smola, A.J: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  82. Schölkopf, B., Smola, A.J., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)

    Article  Google Scholar 

  83. Simard, P.Y., LeCun, Y.A., Denker, J.S., Victorri, B.: Transformation invariance in pattern recognition—tangent distance and tangent propagation. In: Orr, G., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, LNCS 1524, pp. 239–274 (1998)

    Google Scholar 

  84. Afrin, M.H.RH.: Hand gesture recognition using multiclass support vector machine. Int. J. Comput. Appl. 74(1), 39–43 (2013)

    Google Scholar 

  85. Chen, Y-T., Tseng, K-T.: Multiple-angle hand gesture recognition by fusing SVM classifiers. Proceedings of the 3rd Annual IEEE Conference on Automation Science and Engineering, pp. 527–530 (2007)

    Google Scholar 

  86. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  87. Coomans, D., Massart, D.L.: Alternative k-nearest neighbor rules in supervised pattern recognition: Part 1. K-Nearest neighbor classification by using alternative voting rules. Anal. Chimi. Acta 136, 15–27 (1982)

    Article  Google Scholar 

  88. Bremner D., Demaine E., Erickson J., Iacono J., Langerman S., Morin P., Toussaint G.: Output-sensitive algorithms for computing nearest-neighbor decision boundaries. Discret. Comput. Geom. 33(4), 593–604 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  89. http://www.analyticbridge.com/forum/topics/clustering-idea-for-very-large-datasets

  90. Pujan, Z., M¨uller, T., Foster, M.E., Knoll, A.: A Na¨ıve Bayes Classifier with Distance Weighting for Hand-Gesture Recognition. CSICC 2008, CCIS 6, 308–315 (2008)

    Google Scholar 

  91. Pujan, Z., M¨uller, T., Foster, M.E., Knoll, A.: Using a Naïve Bayes classifier based on k-nearest neighbors with distance weighting for static hand-gesture recognition in a human-robot dialog system. Adv. Comput. Sci. Eng. 6(1–8), 308–315 (2008)

    Google Scholar 

  92. Vafadar, M., Behrad, A.: Human hand gesture recognition using Spatio-temporal volumes for human-computer Interaction. International Symposium on Telecommunications, pp. 713–718 (2008)

    Google Scholar 

  93. Kollorz, E., Penne, J., Hornegger, J., Barke, A.: Gesture recognition with a time-of-flight camera. Int. J. Intell. Syst. Technol. Appl. 5–¾, 334–343 (2008)

    Google Scholar 

  94. http://www.byclb.com/TR/Tutorials/neural_networks/ch6_1.htm

  95. Haykin, S.: Neural Network—a Comprehensive Foundation; a Computational Approach to Learning and Machine Intelligence, Macmillan (1994)

    Google Scholar 

  96. Zurada, J.M.: Introduction to Artificial Neural Networks System. Jaico Publishing House (1992)

    Google Scholar 

  97. Freeman: Artificial Neural Network Algorithm. Applications and Programming, Comp and Neural Systems Series, Addison-Wesley Pub (Sd) (1990)

    Google Scholar 

  98. Kulkarni, A.: Artificial Neural Network for Image Understanding. Reinhold, New York (1994)

    Google Scholar 

  99. Anderson, J.: An Introduction to Neural Network. A Bradford Book (1995)

    Google Scholar 

  100. Ranjan, A.: A New Approach for Blind Source Separation of Convolutive Sources (2008)

    Google Scholar 

  101. Carpenter, G.A., Grossberg, S.: The ART of adaptive pattern recognition by a self-organizing neural network. Computer 21, 77–88 (1998)

    Article  Google Scholar 

  102. Hinton, G., Sejnowski, T.J. (ed.): Unsupervised Learning: Foundations of Neural Computation, MIT Press (1999)

    Google Scholar 

  103. Duda, R.O., Hart, P.E., Stork, D.G.: Unsupervised Learning and Clustering, Chapter 10 in Pattern classification, 2nd edn. Wiley, New York, p. 571 (2001)

    Google Scholar 

  104. Ghahramani, Z.: Unsupervised Learning (2004) http://mlg.eng.cam.ac.uk/zoubin/papers/ul.pdf. Accessed April 18, 2013

  105. Williams, R.J.: A class of gradient-estimating algorithms for reinforcement learning in neural networks. Proceedings of the IEEE First International Conference on Neural Networks (1987)

    Google Scholar 

  106. Sutton, R.S.: Learning to Predict by the Method of Temporal Differences. Machine Learning (Springer), vol. 3, pp. 9–44 (1998).

    Google Scholar 

  107. Bradtke, S.J., Barto, A.G.: Learning to Predict by the Method of Temporal Differences. Machine Learning (Springer), vol. 22, pp. 33–57 (1996)

    Google Scholar 

  108. Bertsekas, D.P., Tsitsiklis, D.: Neuro-Dynamic Programming. Athena Scientific, Nashua (1996)

    MATH  Google Scholar 

  109. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Google Scholar 

  110. Peters, J., Vijayakumar, S., Schaal, S.: Reinforcement learning for humanoid robotics. IEEE-RAS International Conference on Humanoid Robots (2003)

    Google Scholar 

  111. Powell, W.: Approximate Dynamic Programming: Solving the Curses Of Dimensionality. Wiley-Interscience (2007)

    Google Scholar 

  112. Auer, P., Jaksch, T., Ortner, R.: Near-optimal regret bounds for reinforcement learning. J. Mach. Learn. Res. 11, 1563–1600 (2010)

    MATH  MathSciNet  Google Scholar 

  113. Szita, I., Szepesvari, C.: Model-based Reinforcement Learning with Nearly Tight Exploration Complexity Bounds. ICML 2010, pp. 1031–1038 (2008)

    Google Scholar 

  114. Bertsekas, D.P.: Approximate Dynamic Programming. Dynamic Programming and Optimal Control II, 3rd edn. (2010)

    Google Scholar 

  115. Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming using Function Approximators. Taylor & Francis CRC Press (2010)

    Google Scholar 

  116. Tokic, M., Palm, G.: Value-difference based exploration: adaptive control between Epsilon-Greedy and Softmax. KI 2011: advances in Artificial intelligence. Lecture Notes in Computer Science, vol. 7006, pp. 335–346 (2011)

    Google Scholar 

  117. Wu, J., Chen, E., Wang, H., Shen, Y., Huang, T., Zeng, Z.: A Novel nonparametric regression ensemble for rainfall forecasting using particle swarm optimization technique coupled with artificial neural network. 6th International Symposium on Neural Networks (2009)

    Google Scholar 

  118. De Rigo, D., Castelletti, A., Rizzoli, A.E., Soncini-Sessa, R., Weber, E.: A selective improvement technique for fastening Neuro-Dynamic programming in water resources network management. In: Zítek, P. (ed.) Proceedings of the 16th IFAC World Congress (2005)

    Google Scholar 

  119. Ferreira, C.: Designing neural networks using gene expression programming. In: Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds.) Applied Soft Computing Technologies: The Challenge of Complexity, pp. 517–536 (2006)

    Chapter  Google Scholar 

  120. Da, Y., Xiurun, G., Villmann, T.: An improved PSO-based ANN with simulated annealing technique. New Aspects in Neurocomputing: 11th European Symposium on Artificial Neural Networks. Elsevier (2005)

    Google Scholar 

  121. Balabin, R.M., Lomakina, E.I.: Neural network approach to quantum-chemistry data: accurate prediction of density functional theory energies. J. Chem. Phys. 131(7), 1–8 (2009)

    Google Scholar 

  122. Ganesan, N. Venkatesh, K., Rama M.A.: Application of neural networks in diagnosing cancer disease using demographic data. International Journal of Computer Applications 1(26), 76–85 (2010)

    Google Scholar 

  123. Bottaci, L. Drew, P.J., Hartley, J.E., Hadfield, M.B., Farouk, R., Lee, P.W., Macintyre, I.M., Duthie, G.S., Monson, J.R.: Artificial Neural Networks Applied to Outcome Prediction for Colorectal Cancer Patients in Separate Institutions. The Lancet 350(9076), 469–472 (1997)

    Google Scholar 

  124. Premaratne, P., Safaei, F., Nguyen, Q.: Moment invariant based control system using hand gestures: book intelligent computing in signal processing and pattern recognition. Book Series Lecture Notes in Control and Information Sciences, vol. 345, pp. 322–333 (2006)

    Google Scholar 

  125. Gutta, S., Imam, I.F., Wechsler, H.: Hand gesture recognition using ensembles of radial basis functions (RBF) networks and decision trees. Int. J. Patt. Recognit. Artif. Intell. 11(6) (1997)

    Google Scholar 

  126. Murthy, G.R.S., Jadon, R.S.: Hand gesture recognition using neural networks. IEEE 2nd International Advance Computing Conference Artificial Intelligence, pp. 134–138 (2010)

    Google Scholar 

  127. Hasan, H., Abdul-Kareem, S.: Static hand gesture recognition using neural networks. Artificial Intelligence Review 41:147–181 (2012)

    Google Scholar 

  128. Zheng, X., Koenig, S.: A Project on Gesture Recognition with Neural Networks for Introduction to Artificial intelligence Classes (2010)

    Google Scholar 

  129. Min, B-W., Yoon, H-S., Soh, J., Yang, Y-M., Ejima, T.: Hand gesture recognition using hidden Markov models. 1997 IEEE International Conference on Systems, Man, and Cybernetics on Computational Cybernetics and Simulation, vol. 5, pp. 4232–4235 (1997)

    Google Scholar 

  130. Yang, L., Xu, Y., Chen, C.S.: Human action learning via hidden Markov model. IEEE Trans. Syst. Man. Cybern. 27(1), 34–44 (1997)

    Article  Google Scholar 

  131. Yang, L., Xu, Y.: Hidden Markov model for gesture recognition.Thesis, The Robotics Institute Carnegie Mellon University (1994)

    Google Scholar 

  132. Kadous, W.: Machine learning is a subfield of artificial intelligence. PhD Thesis, University of New South Wales (2002)

    Google Scholar 

  133. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967)

    Article  MATH  Google Scholar 

  134. Rabiner, L.: First Hand: The Hidden Markov Model. IEEE Global History Network. http://www.ieeeghn.org/wiki/index.php/First-Hand:The_Hidden_Markov_Model. Accessed Aug. 24, 2013

  135. Yang, Z., Li, Y., Chen, W., Zheng, Y.: Dynamic hand gesture recognition using hidden Markov models. 7th International Conference on Computer Science & Education (ICCSE), pp. 360–365 (2012)

    Google Scholar 

  136. Chen, F.S., Fu, C.M., Huang, C.L.: Hand gesture recognition using a real-time tracking method and hidden Markov models. Image Vision Comput. 21(8), 745–758 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashan Premaratne .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Premaratne, P. (2014). Effective Hand Gesture Classification Approaches. In: Human Computer Interaction Using Hand Gestures. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-69-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-69-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-68-2

  • Online ISBN: 978-981-4585-69-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics