Advertisement

Color and Thermal Image Fusion for Augmented Reality in Rescue Robotics

  • Ludek ZaludEmail author
  • Petra Kocmanova
  • Frantisek Burian
  • Tomas Jilek
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 291)

Abstract

At the beginning of this article, the authors address the main problems of todays remotely-operated reconnaissance robots. The reconnaissance robots Orpheus-AC, Orpheus-AC2 and Orpheus-Explorer, made in the Department of Control and Instrumentation (DCI), are then shortly described. Since all the described robotic systems use visual telepresence as the main control technique, visual information from the robots surroundings is essential for the operator. For this reason, the authors make a fusion of data from a Charge-Coupled Device (CCD) color camera, and a thermovision camera to provide the operator with data in all visibility conditions, such as complete darkness, fog, smoke, etc.

Keywords

Robot User interface Telepresence Augmented reality 

Notes

Acknowledgments

This work was supported by the project CEITEC—Central European Institute of Technology (CZ.1.05/1.1.00/02.0068) from European Regional Development Fund.

References

  1. 1.
    Jacoff A, Weiss B, Messina E (2003) Evolution of a performance metric for urban search and rescue robots. In: Performance metrics for intelligent systems workshop, Aug 2003. Gaithersburg, MDGoogle Scholar
  2. 2.
    Zalud L (2004) Rescue robot league—1st place award winner. In: RoboCup 2003: robot soccer world cup VII. Springer, Germany. ISBN 3-540-22443-2Google Scholar
  3. 3.
    Wise E (1999) Applied robotics. Prompt Publications, USA. ISBN 0-7906-1184-8Google Scholar
  4. 4.
    Zalud L (2001) Universal autonomous and telepresence mobile robot navigation. In: 32nd international symposium on robotics. ISR 2001, pp 1010–1015, Seoul, KoreaGoogle Scholar
  5. 5.
    Zalud L (2005) ORPHEUS reconniaissance teleoperated robotic system, In: 16th IFAC world congress, pp 1–6, Prague, Czech RepublicGoogle Scholar
  6. 6.
    Martin CM, Moravec HP (1996) Robot evidence grids. The Robotics Institute Carnegie Melon University, Pittsburgh, 15213Google Scholar
  7. 7.
    Mullet K, Sano D (1995) Designing visual interfaces communication oriented techniques. Sun Microsystems Inc, USA. ISBN 0-13-303389-9zbMATHGoogle Scholar
  8. 8.
    Oyama E, Tsunemoto N, Tachi S, Inoue S (1993) Experimental study on remote manipulation using virtual reality. Presence 2(2):112–124Google Scholar
  9. 9.
    Sheridan TB (1992) Telerobotics, automation, and human supervisory control. MIT Press, CambridgeGoogle Scholar
  10. 10.
    Ayache N (1991) Artificial vision for mobile robots stereo vision and multisensory perception (translation). The MIT Press, Cambridge. ISBN 0-262-01124-7Google Scholar
  11. 11.
    Gonzalez G, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Englewood Cliffs. ISBN 0-201-18075-8Google Scholar
  12. 12.
    Everett HR (1995) Sensors for mobile robots, theory and applications. AK Peters Ltd, USA. ISBN 1-56881-048-2Google Scholar
  13. 13.
    FlirSystems (2007) Retrieved Mar 12 2007. from http://www.flirthermography.com
  14. 14.
    Wyszecki G, Stiles WS (2000) Color science concepts and methods, quantitative data and formulae. Wiley-Interscience, New York. ISBN 0-471-02106-7Google Scholar
  15. 15.
    LaMothe A (2003) Tricks of the 3D game programming gurus advanced 3D graphics and rasterization. SAMS Publishing, USA. ISBN 0-672-31835-0Google Scholar
  16. 16.
    Luna DF (2003) Introduction to 3D game programming with DirectX 9.0. Wordware Publishing Inc, USA. ISBN 1-55622-913-5Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  • Ludek Zalud
    • 1
    Email author
  • Petra Kocmanova
    • 1
  • Frantisek Burian
    • 1
  • Tomas Jilek
    • 1
  1. 1.CEITEC Central European Institute of TechnologyBrnoCzech Republic

Personalised recommendations