A Review for Image Segmentation Approaches Using Module-Based Framework

  • Guannan JiangEmail author
  • Chin Yeow Wong
  • Stephen Ching-Feng Lin
  • Ngaiming Kwok
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 291)


Image segmentation assists image understanding by perceptually partitioning an image into several homogeneous regions. This topic has been reported in a vast amount of literature. The techniques covered in the literature, however, are often concealed in specific applications with no explicit categorization. In order to cater the needs for both reasonably choosing methods under various circumstances and guiding further algorithm development, a review that can reveal the characteristics of typical segmentation approaches under detailed categorization is in demand. A natural categorization of the segmentation techniques with respect to their modeling methods is advocated here. Using such categorization as basis, different segmentation methods are presented within a general module-based framework proposed in this paper, where investigation for each module is carried out in a coherent manner.


Image segmentation Categorization Module-based framework 


  1. 1.
    Toyama K, Krumm J, Brumitt B, Meyers B (1999) Wallflower: principles and practice of background maintenance. In: The Proceedings of the seventh IEEE international conference on computer vision, vol 1. pp 255–261Google Scholar
  2. 2.
    Mortensen EN, Barrett WA (1998) Interactive segmentation with intelligent scissors. Graph Models Image Process 60:349–384CrossRefzbMATHGoogle Scholar
  3. 3.
    Ohlander R, Price K, Reddy DR (1978) Picture segmentation using a recursive region splitting method. Comput Graph Image Process 8(3):313–333CrossRefGoogle Scholar
  4. 4.
    Brice CR, Fennema CL (1970) Scene analysis using regions. Artif Intell 1(3):205–226CrossRefGoogle Scholar
  5. 5.
    Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning, vol 1. Springer, New YorkzbMATHGoogle Scholar
  6. 6.
    Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Barnard K, Duygulu P, Guru R, Gabbur P, Forsyth D (2003) The effects of segmentation and feature choice in a translation model of object recognition. In: Proceedings 2003 IEEE computer society conference on computer vision and pattern recognition, vol 2. IEEE, II–675Google Scholar
  8. 8.
    Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: IEEE computer society conference on computer vision and pattern recognition, vol 2. IEEEGoogle Scholar
  9. 9.
    Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892CrossRefGoogle Scholar
  10. 10.
    Isa NAM, Salamah SA, Ngah UK (2009) Adaptive fuzzy moving k-means clustering algorithm for image segmentation. IEEE Trans Consum Electron 55(4):2145–2153CrossRefGoogle Scholar
  11. 11.
    Siddiqui FU, Mat Isa NA (2011) Enhanced moving k-means (EMKM) algorithm for image segmentation. IEEE Trans Consum Electron 57(2):833–841CrossRefGoogle Scholar
  12. 12.
    Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 2. IEEE, pp 142–149Google Scholar
  13. 13.
    Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619CrossRefGoogle Scholar
  14. 14.
    Freedman D, Kisilev P (2009) Fast mean shift by compact density representation. In: IEEE conference on computer vision and pattern recognition (CVPR 2009). IEEE, pp 1818–1825Google Scholar
  15. 15.
    Paris S, Durand F (2007) A topological approach to hierarchical segmentation using mean shift. In: IEEE conference on computer vision and pattern recognition (CVPR’07). IEEE, pp 1–8Google Scholar
  16. 16.
    Shan C, Wei Y, Tan T, Ojardias F. (2004) Real time hand tracking by combining particle filtering and mean shift. In: Proceedings of the sixth IEEE international conference on automatic face and gesture recognition. IEEE, pp 669–674Google Scholar
  17. 17.
    Oliver NM, Rosario B, Pentland AP (2000) A bayesian computer vision system for modeling human interactions. IEEE Trans Pattern Anal Mach Intell 22(8):831–843CrossRefGoogle Scholar
  18. 18.
    Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intel 22(8):888–905CrossRefGoogle Scholar
  19. 19.
    Golub GH, Van Loan CF (2012) Matrix computations, vol 3. JHU Press, BaltimoreGoogle Scholar
  20. 20.
    Malik J, Belongie S, Leung T, Shi J (2001) Contour and texture analysis for image segmentation. Int J Comput Vis 43(1):7–27CrossRefzbMATHGoogle Scholar
  21. 21.
    Stein AN, Stepleton TS, Hebert M (2008) Towards unsupervised whole-object segmentation: combining automated matting with boundary detection. In: IEEE conference on computer vision and pattern recognition (CVPR 2008). IEEE, pp 1–8Google Scholar
  22. 22.
    Sharon E, Galun M, Sharon D, Basri R, Brandt A (2006) Hierarchy and adaptivity in segmenting visual scenes. Nature 442(7104):810–813CrossRefGoogle Scholar
  23. 23.
    Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331CrossRefGoogle Scholar
  24. 24.
    Blake A, Curwen R, Zisserman A (1993) A framework for spatiotemporal control in the tracking of visual contours. Int J Comput Vis 11(2):127–145CrossRefGoogle Scholar
  25. 25.
    Isard M, Blake A (1998) Condensationconditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28CrossRefGoogle Scholar
  26. 26.
    Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Osher S, Paragios N (2003) Geometric level set methods in imaging, vision, and graphics. Springer, BerlinzbMATHGoogle Scholar
  28. 28.
    Greig D, Porteous B, Seheult AH (1989) Exact maximum a posteriori estimation for binary images. J Roy Stat Soc B (Methodological), 271–279Google Scholar
  29. 29.
    Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137CrossRefGoogle Scholar
  30. 30.
    Blake A, Rother C, Brown M, Perez P, Torr P (2004) Interactive image segmentation using an adaptive GMMRF model. In: Computer vision-ECCV 2004, Springer, Berlin, pp 428–441Google Scholar
  31. 31.
    Lermé N, Malgouyres F, Létocart L (2010) Reducing graphs in graph cut segmentation. In: 17th IEEE international conference on image processing (ICIP) 2010. IEEE, pp 3045–3048Google Scholar
  32. 32.
    Vicente S, Kolmogorov V, Rother C (2008) Graph cut based image segmentation with connectivity priors. In: IEEE conference on computer vision and pattern recognition (CVPR 2008). IEEE, pp 1–8Google Scholar
  33. 33.
    Hoang MA, Geusebroek JM, Smeulders AW (2005) Color texture measurement and segmentation. Signal Process 85(2):265–275CrossRefzbMATHGoogle Scholar
  34. 34.
    Hedjam R, Mignotte M (2009) A hierarchical graph-based markovian clustering approach for the unsupervised segmentation of textured color images. In: 16th IEEE international conference on image processing (ICIP 2009). IEEE, pp 1365–1368Google Scholar
  35. 35.
    Kim JS, Hong KS (2009) Color–texture segmentation using unsupervised graph cuts. Pattern Recogn 42(5):735–750CrossRefzbMATHGoogle Scholar
  36. 36.
    Serrano C, Acha B (2009) Pattern analysis of dermoscopic images based on markov random fields. Pattern Recogn 42(6):1052–1057CrossRefGoogle Scholar
  37. 37.
    Choong MY, Kow WY, Khong WL, Liau CF, Teo KTK An image segmentation using normalised cuts in multistage approach. Image, 5(6):7Google Scholar
  38. 38.
    Tan LY, Wang SJ (2013) Multilevel and mean shift based image segmentation using kway-ncut. Moshi Shibie yu Rengong Zhineng/Pattern Recogn Artif Intell 26(4):328–336 cited By (since 1996)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  • Guannan Jiang
    • 1
    Email author
  • Chin Yeow Wong
    • 1
  • Stephen Ching-Feng Lin
    • 1
  • Ngaiming Kwok
    • 1
  1. 1.School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations