Skip to main content

Adaptive Discrete Sliding Mode Control for a Non-minimum Phase Electro-Hydraulic Actuator System

  • Conference paper
  • First Online:
Book cover The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 291))

Abstract

This paper presents an adaptive robust control technique based on discrete sliding mode control (DSMC) for an electro-hydraulic actuator (EHA) system. A new adaptive control strategy with the enhancement of DSMC with two-degree-of-freedom (2-DOF) structure is proposed. The control scheme that will render uncertain system and time-varying in EHA system’s parameters can be obtained by the integration of recursive system identification technique. A comprehensive performance evaluation with quantitative measures and validation of the tracking performance is presented. In the experimental studies, Optimal Linear Quadratic Regulator (LQR) and Proportional-Integral-Derivative (PID) are implemented to be compared with the proposed robust controller. The results showed that robust system performance is achieved with DSMC for various system conditions while capable to reduce the control effort and gives better tracking performance as compared to the conventional LQR and PID controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Y, Handroos H (1999) Sliding mode control for a class of hydraulic position servo. Mechatronics 9(1):111–123

    Article  Google Scholar 

  2. Cho SH, Edge KA (2000) Adaptive sliding mode tracking control of hydraulic servosystems with unknown non-linear friction and modelling error. Proc Inst Mech Eng, Part I: J Syst Control Eng 214(4):247–257

    Google Scholar 

  3. Bonchis A, Corke PI, Rye DC, Ha QP (2001) Variable structure methods in hydraulic servo systems control. Automatic 37:589–595

    Article  MATH  MathSciNet  Google Scholar 

  4. Chuang C, Shiu L (2004) CPLD based DIVSC of hydraulic position control systems. Comput Electr Eng 30(7):527–541

    Article  MATH  Google Scholar 

  5. Chen H, Renn J, Su J (2005) Sliding mode control with varying boundary layers for an electro-hydraulic position servo system. Int J Adv Manuf Technol 26(1–2):117–123

    Article  Google Scholar 

  6. Guan C, Pan S (2008) Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters. Control Eng Pract 16(11):1275–1284

    Article  Google Scholar 

  7. Loukianov AG, Rivera J, Orlov YV, Teraoka EYM (2009) Robust trajectory tracking for an electrohydraulic actuator. IEEE Trans Industr Elect 56(9):3523–3531

    Article  Google Scholar 

  8. Wang S, Burton R, Habibi S (2011) Sliding mode controller and filter applied to an electrohydraulic actuator system. ASME J Dyn Syst, Measur, Control 133(2):1–7

    Google Scholar 

  9. Van M, Kang H, Suh Y (2013) Second order sliding mode-based output feedback tracking control for uncertain robot manipulators. Int J Adv Rob Syst 10(16):1–9

    Google Scholar 

  10. Lin Y, Shi Y, Burton R (2013) Modeling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system. IEEE ASME Trans Mechatron 18(1):1–10

    Article  Google Scholar 

  11. Yu X, Wang B, Li X (2012) Computer-controlled variable structure systems: the state-of-the-art. IEEE Trans Industr Inf 8(2):197–205

    Google Scholar 

  12. Jelali M, Kroll A (2003) Hydraulic servo-systems: modelling, identification and control. Springer, London

    Book  Google Scholar 

  13. Knohl T, Unbehauen H (2000) Adaptive position control of electrohydraulic servo systems using ANN. Mechatronics 10(1–2):127–143

    Article  Google Scholar 

  14. Bartoszewicz A (1996) Remarks on `Discrete-time variable structure control systems’. IEEE Trans Industr Electron 43:235–238

    Google Scholar 

  15. Ghazali R, Sam YM, Rahmat MF, Zulfatman Z (2011) Recursive parameter estimation for discrete-time model of an electro-hydraulic servo system with varying forgetting factor. Int J Phys Sci 6(30):6829–6842

    Article  Google Scholar 

  16. Shifeng O, Xianyun W, Ying G (2013) Adaptive improved RLS algorithm for blind source separation. Przeglad Elektrotechniczny 3b/2013:81–83

    Google Scholar 

  17. Sha DD, Bajic VB (2000) Robust discrete adaptive input-output-based sliding mode controller. Int J Syst Sci 31(12):1601–1614

    Article  MATH  Google Scholar 

  18. Park YM, Kim W (1996) Discrete-time adaptive sliding mode power system stabilizer with only input/output measurements. Electr Power Energy Syst 18(8):509–517

    Article  Google Scholar 

  19. Wu B, Li S, Wang X (2009) Discrete-time adaptive sliding mode control of autonomous underwater vehicle in the dive plane, intelligent robotics and applications, Lecture notes in computer science, pp 157–164

    Google Scholar 

  20. Yoshimura T (2008) Adaptive sliding mode control for a class of non-linear discrete-time systems with mismatched time-varying uncertainty. Int J Model Ident Control 4(3):250–259

    Article  MathSciNet  Google Scholar 

  21. Semba T, Furuta K (1996) Discrete-time adaptive control using a sliding mode. Math Probl Eng 2:131–142

    Article  MATH  Google Scholar 

  22. Akpolat ZH, Gokbulut M (2002) Discrete time adaptive reaching law speed control of electrical drives. Electr Eng 85:53–58

    Google Scholar 

  23. Tomizuka M (1987) Zero phase error tracking algorithm for digital controller. ASME J Dyn Syst, Measur, Control 109(1):65–68

    Article  MATH  Google Scholar 

  24. Wang J, Van Brussel H, Swevers J (2003) Robust perfect tracking control with discrete sliding mode controller. ASME J Dyn Syst, Measur, Control 125(1):27–32

    Article  Google Scholar 

  25. Bonchis A, Corke PI, Rye DC (2002) Experimental evaluation of position control methods for hydraulic systems. IEEE Trans Control Syst Technol 10(6):876–882

    Article  Google Scholar 

  26. Choux M, Hovland G (2010) Adaptive backstepping control of nonlinear hydraulic-mechanical system including valve dynamics. Model, Ident Control 31(1):35–44

    Article  Google Scholar 

  27. Ghazali R, Sam YM, Rahmat MF, Zulfatman AW, Hashim IM (2012) Simulation and experimental studies on perfect tracking optimal control of an electrohydraulic actuator systems. J Control Sci Eng 2012:1–8

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Universiti Teknologi Malaysia (UTM) for the Research University Grant Vot 05H02, Universiti Tun Hussein Onn Malaysia (UTHM) and Ministry of Science, Technology and Innovation (MOSTI) Malaysia for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rozaimi Ghazali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this paper

Cite this paper

Ghazali, R., Sam, Y.M., Rahmat, M.F., Has, Z. (2014). Adaptive Discrete Sliding Mode Control for a Non-minimum Phase Electro-Hydraulic Actuator System. In: Mat Sakim, H., Mustaffa, M. (eds) The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications. Lecture Notes in Electrical Engineering, vol 291. Springer, Singapore. https://doi.org/10.1007/978-981-4585-42-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-42-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-41-5

  • Online ISBN: 978-981-4585-42-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics