Skip to main content

Probabilistic Modeling and Statistical Characteristics of Aggregate Wind Power

  • Chapter
  • First Online:
Book cover Large Scale Renewable Power Generation

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The stochasticity of the electrical power output by wind turbines poses special challenges to power system operation and planning. Increasing penetration levels of wind and other weather-driven renewable resources exacerbate the uncertainty and variability that must be managed. This chapter focuses on the probabilistic modeling and statistical characteristics of aggregated wind power in large electrical systems. The mathematical framework for probabilistic models—accounting for geographic diversity and the smoothing effect—is developed, and the selection and application of parametric models is discussed. Statistical characteristics from several real systems with high levels of wind power penetration are provided and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. Wiley, West Sussex

    Book  Google Scholar 

  2. Smith JC, Milligan M, DeMeo EA, Parsons B (2007) Utility wind integration and operating impact state of the art. IEEE Trans Power Syst 22:900–908. doi:10.1109/TPWRS.2007.901598

    Article  Google Scholar 

  3. Smith JC, Thresher R, Zavadil R, DeMeo EA, Piwko R, Ernst B, Ackerman T (2009) A mighty wind. IEEE Power Energy Mag 7:41–51. doi:10.1109/MPE.2008.931492

    Article  Google Scholar 

  4. Tuohy A, Meibom P, Denny E, O’Malley M (2009) Unit commitment for systems with significant wind penetration. IEEE Trans Power Syst 24:592–601. doi:10.1109/TPWRS.2009.2016470

    Article  Google Scholar 

  5. Ruiz P, Philbrick CR, Zak E, Cheung K, Sauer P (2008) Applying stochastic programming to the unit commitment problem. In: Probabilistic methods applied to power systems; 2008

    Google Scholar 

  6. Pinson P, Kariniotakis G (2010) Conditional prediction intervals of wind power generation. IEEE Trans Power Syst 25:1845–1856

    Article  Google Scholar 

  7. Hasche B (2010) General statistics of geographically dispersed wind power. Wind Energy 13:773–784. doi:10.1002/we.397

    Article  Google Scholar 

  8. EnerNex Corporation (2011) Eastern wind integration and transmission study. Technical report NREL/SR-5500-47078, NREL, Golden, CO, USA

    Google Scholar 

  9. GE Energy (2010) Western wind and solar integration study. Technical report NREL/SR-550-47434, NREL, Golden, CO, USA 2010

    Google Scholar 

  10. McNerney G, Richardson R (1992) The statistical smoothing of power delivered to utilities by multiple wind turbines. IEEE Trans Energy Convers 7(4):644–647. doi:10.1109/60.182646

    Article  Google Scholar 

  11. Archer C, Jacobson M (2003) Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. J Geophys Res 108(D9):10–1–10–20

    Google Scholar 

  12. Wan Y (2004) Wind power plant behaviors: analyses of long-term wind power data. Technical report NREL/TP-500-36551

    Google Scholar 

  13. Holttinen H (2005) Hourly wind power variations in the Nordic countries. Wind Energy 8:173–195

    Article  Google Scholar 

  14. Ernst B, Wan Y, Kirby B (1999) Short-term power fluctuation of wind turbines: analyzing data from the German 250-MW measurement program from the ancillary services viewpoint. Technical report NREL/CP-500-26722

    Google Scholar 

  15. Wan Y, Milligan M, Parsons B (2003) Output power correlation between adjacent wind power plants. J Sol Energy Eng 125:551–555

    Article  Google Scholar 

  16. Louie H (2013) Correlation and statistical characteristics of aggregate wind power in large transcontinental systems. Wind Energy. doi:10.1002/we.1597

    MATH  Google Scholar 

  17. Tastu J, Pinson P, Kotwa E, Madsen H, Nielsen H (2011) Spatio-temporal analysis and modeling of short-term wind power forecast errors. Wind Energy 14:43–60. doi:10.1002/we.401

    Article  Google Scholar 

  18. Nanahara T, Asari M, Maejima T, Sato T, Yamaguchi K, Shibata M (2004) Smoothing effects of distributed wind turbines. Part 2. Coherence among power output of distant wind turbines. Wind Energy 7:75–85. doi:10.1002/we.108

    Article  Google Scholar 

  19. Krich A, Milligan M (2005) The impact of wind energy on hourly load following requirements: an hourly and seasonal analysis. Technical report NREL/CP-500-38061

    Google Scholar 

  20. Wan Y (2011) Analysis of wind power ramping behavior in ERCOT. Technical report NREL/TP-5500-49218 2011

    Google Scholar 

  21. Gibescu M, Brand A, Kling W (2008) Estimation of variability and predictability of large-scale wind energy in the Netherlands. Wind Energy 12:241–260. doi:10.1002/we.291

    Article  Google Scholar 

  22. Milligan M (2000) Modelling utility-scale wind power plants. Part 2: Capacity credit. Wind Energy 3:167–206. doi:10.1002/we.36

    Article  Google Scholar 

  23. Sloughter JM, Gneiting T, Raftery AE (2010) Probabilistic wind speed forecasting using ensembles and Bayesian model averaging. J Am Stat Assoc 105:25–35. doi:10.1198/jasa.2009.ap08615

    Article  MathSciNet  Google Scholar 

  24. Papoulis A, Pillai SU (2002) Probability, random variables and stochastic processes, 4th edn. McGraw-Hill, New York

    Google Scholar 

  25. Justus CG, Hargraves WR, Mikhail A, Graber D (1978) Methods for estimating wind speed frequency distributions. J Appl Meteorol 17:350–353

    Article  Google Scholar 

  26. Tuzuner A, Yu Z (2008) A theoretical analysis on parameter estimation for the weibull wind speed distribution. IEEE PES General Meeting 2008

    Google Scholar 

  27. Twidell J, Weir T (2006) Renew Energy Res, 2nd edn. Taylor & Francis, London

    Google Scholar 

  28. International Electrotechnical Commission (2005), Power performance measurements of electricity producing wind turbines. Standard 61400-12-1

    Google Scholar 

  29. Camm EH, Behnke MR, Bolado O et al (2009) Wind power plant substation and collector system redundancy, reliability and economics. IEEE PES general meeting 2009

    Google Scholar 

  30. Fischer K, Besnard F, Bertling L (2012) Reliability-centered maintenance for wind turbines based on statistical analysis and practical experience. IEEE Trans Energy Convers 27(184):195. doi:10.1109/TEC.2011.2176129

    Google Scholar 

  31. Potter CW, Gil H, McCaa J (2007) Wind power data for grid integration studies. IEEE PES general meeting

    Google Scholar 

  32. Hayes B, Ilie I, Porpodas A, Djokic S, Chicco G. Equivalent power curve model of a wind farm based on field measurement data. In: IEEE PowerTech; 2011

    Google Scholar 

  33. Jin T, Tian Z (2010) Uncertainty analysis for wind energy production with dynamic power curves. In: Probabilistic methods applied to power systems; 2010

    Google Scholar 

  34. Collins J, Parkes J, Tindal A (2009) Forecasting for utility-scale wind farms—the power model challenge. In: CIGRE/IEEE joint symposium on integration of wide-scale renewable resources into the power delivery system 2009

    Google Scholar 

  35. Kendall M (1938) A new measure of rank correlation. Biometrika 30:81–89

    MATH  MathSciNet  Google Scholar 

  36. Louie H (2012) Evaluating Archimedean copula models of wind speed for wind power modeling. Power Africa 2012:1–5. doi:10.1109/PowerAfrica.6498610

    Google Scholar 

  37. Wind integration datasets (2011) National Renewable Energy Laboratory. http://www.nrel.gov/wind/integrationdatasets. Accessed 1 July 2013

  38. Osborn D, Hendersen M, Nickell B, Lasher W, Liebold C, Adams J, Caspary J (2011) Driving forces behind wind. Power Energy Mag 9:60–74

    Article  Google Scholar 

  39. Nelsen R (2006) An introduction to copulas, 2nd edn. Springer, New York

    MATH  Google Scholar 

  40. Louie H (2012) Evaluation of bivariate Archimedean and elliptical copulas to model wind power dependency structures. Wind Energy. doi:10.1002/we.1571

    MATH  Google Scholar 

  41. Díaz G (2013) A note on the multivariate Archimedean dependence structure in small wind generation sites. Wind Energy. doi:10.1002/we.1633

    Google Scholar 

  42. Louie H (2010) Characterizing and modelling aggregate wind plant power output in large systems. IEEE PES general meeting; 2010, pp 1–8

    Google Scholar 

  43. Beckman RJ, Tietjen GL. Maximum likelihood estimation for the beta distribution. J Stat Comput Simul 7:253–258

    Google Scholar 

  44. Louie H (2010) Evaluation of probabilistic models of wind plant power output characteristics. In: Probabilistic methods applied to power systems; 2010, pp 442–447, doi: 10.1109/PMAPS.2010.5528963

  45. McManus B (2013) Wind generation & total load in the BPA balancing authority. Bonneville Power Administration. http://www.transmission.bpa.gov/Business/Operations/Wind/default.aspx. Accessed 1 July 2013

  46. Market reports (2013). MISO. https://www.midwestiso.org/Library/MarketReports/. Accessed 1 July 2013

  47. Operational analysis (2013). PJM interconnection www.pjm.com/markets-and-operations/ops-analysis.aspx. Accessed 1 July 2013

  48. Archive wind power (2013). 50 Hz. http://www.50 hz.com/en/1983.htm. Accessed 1 July 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Louie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Louie, H., Sloughter, J.M. (2014). Probabilistic Modeling and Statistical Characteristics of Aggregate Wind Power. In: Hossain, J., Mahmud, A. (eds) Large Scale Renewable Power Generation. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-30-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-30-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-29-3

  • Online ISBN: 978-981-4585-30-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics