Skip to main content

Power Management of Low and Medium Voltage Networks with High Density of Renewable Generation

  • Chapter
  • First Online:
  • 3589 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter presents a review of existing control techniques for load-sharing in low and medium voltage networks. The advantages and major drawbacks of each method are described here. An overall comparison is made to find out the best suitable method for the distribution systems of the future. Finally, the limitations of existing methods and future directions for this research are indicated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vandoorn TL et al (2013) Voltage-based droop control of renewables to avoid on–off oscillations caused by overvoltages. IEEE Trans Power Delivery 2:845–854

    Article  Google Scholar 

  2. Maisonneuve N, Gross G (2011) A production simulation tool for systems with integrated wind energy resources. IEEE Trans Power Syst 26(4):2285–2292

    Article  Google Scholar 

  3. Li YW, Kao C-N (2009) An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid. IEEE Trans Power Electron 24(12):2977–2988

    Article  Google Scholar 

  4. Mohamed Y, El-Saadany EF (2008) Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans Power Electron 23(6):2806–2816

    Article  Google Scholar 

  5. Tuladhar A et al (2000) Control of parallel inverters in distributed AC power systems with consideration of line impedance effect. IEEE Trans Ind Appl 36(1):131–138

    Article  Google Scholar 

  6. Barik MA, Pota HR (2012) Complementary effect of wind and solar energy sources in a microgrid. In: IEEE PES innovative smart grid technologies, pp 1–6

    Google Scholar 

  7. Vandoorn TL et al (2013) Voltage-based control of a smart transformer in a microgrid. IEEE Trans Industr Electron 60(4):1291–1305

    Article  Google Scholar 

  8. Walling RA et al (2008) Summary of distributed resources impact on power delivery systems. IEEE Trans Power Delivery 23(3):1636–1644

    Article  Google Scholar 

  9. Foote CET et al (2008) A power-quality management algorithm for low-voltage grids with distributed resources. IEEE Trans Power Delivery 23(2):1055–1062

    Article  Google Scholar 

  10. Li Y, Vilathgamuwa DM, Loh PC (2005) Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator. IEEE Trans Ind Appl 41(6):1707–1719

    Article  Google Scholar 

  11. Dondi P et al (2002) Network integration of distributed power generation. J Power Sources 106(12):1–9

    Article  Google Scholar 

  12. Barik MA, Pota HR, Ravishankar J (2013) An automatic load sharing approach for a DFIG based wind generator in a microgrid. In: The 8th IEEE conference on industrial electronics and applications (ICIEA), pp 589–594

    Google Scholar 

  13. Wu T-F, Chen Y-K, Huang Y-H (2000) 3C strategy for inverters in parallel operation achieving an equal current distribution. IEEE Trans Industr Electron 47(2):273–281

    Article  Google Scholar 

  14. Bollman AM (2009) An Experimental Study of frequency droop control In a Low-inertia microfrid. The Graduate College of the University of Illinois

    Google Scholar 

  15. Diaz G et al (2010) Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids. IEEE Trans Power Syst 25(1):489–496

    Article  Google Scholar 

  16. Vasquez JC et al (2009) Adaptive droop control applied to voltage-source inverters operating in grid-connected and islanded modes. IEEE Trans Industr Electron 56(10):4088–4096

    Article  Google Scholar 

  17. Nikkhajoei H, Lasseter RH (2009) Distributed generation interface to the CERTS microgrid. IEEE Trans Power Delivery 24(3):1598–1608

    Article  Google Scholar 

  18. Sao CK, Lehn PW (2008) Control and power management of converter fed microgrids. IEEE Trans Power Syst 23(3):1088–1098

    Article  Google Scholar 

  19. Barklund E et al (2008) Energy management in autonomous microgrid using stability-constrained droop control of inverters. IEEE Trans Power Electron 23(5):2346–2352

    Article  Google Scholar 

  20. Sao CK, Lehn PW (2005) Autonomous load sharing of voltage source converters. IEEE Trans Power Delivery 20(2):1009–1016

    Article  Google Scholar 

  21. Katiraei F, Iravani MR, Lehn PW (2005) Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans Power Delivery 20(1):248–257

    Article  Google Scholar 

  22. Chung I-Y et al (2005) Operating strategy and control scheme of premium power supply interconnected with electric power systems. IEEE Trans Power Delivery 20(3):2281–2288

    Article  Google Scholar 

  23. Guerrero JM et al (2004) A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Trans Power Electron 19(5):1205–1213

    Article  Google Scholar 

  24. Borup U, Blaabjerg F, Enjeti PN (2001) Sharing of nonlinear load in parallel-connected three-phase converters. IEEE Trans Ind Appl 37(6):1817–1823

    Article  Google Scholar 

  25. Chandorkar MC, Divan DM, Adapa R (1993) Control of parallel connected inverters in standalone AC supply systems. IEEE Trans Ind Appl 29(1):136–143

    Article  Google Scholar 

  26. Kawabata T, Higashino S (1988) Parallel operation of voltage source inverters. IEEE Trans Ind Appl 24(2):281–287

    Article  Google Scholar 

  27. Tuladhar A et al (1997) Parallel operation of single phase inverter modules with no control interconnections. In: IEEE twelfth annual applied power electronics conference and exposition, pp 94–100

    Google Scholar 

  28. Meng Y et al (2000) Research on voltage source inverters with wireless parallel operation. In: The IPEMC third international power electronics and motion control conference, pp 808–812

    Google Scholar 

  29. Byun YB et al (2000) Parallel operation of three-phase UPS inverters by wireless load sharing control. In: INTELEC. Twenty-second international telecommunications energy conference, pp 526–532

    Google Scholar 

  30. Barsali S et al (2002) Control techniques of dispersed generators to improve the continuity of electricity supply. In: IEEE power engineering society winter meeting, pp 789–794

    Google Scholar 

  31. Katiraei F, Iravani MR (2006) Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans Power Syst 21(4):1821–1831

    Article  Google Scholar 

  32. Pogaku N, Prodanovic M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans Power Electron 22(2):613–625

    Article  Google Scholar 

  33. De Brabandere K et al (2007) A voltage and frequency droop control method for parallel inverters. IEEE Trans Power Electron 22(4):1107–1115

    Article  Google Scholar 

  34. Guerrero JM et al (2007) Decentralized control for parallel operation of distributed generation inverters using resistive output impedance. IEEE Trans Industr Electron 54(2):994–1004

    Article  Google Scholar 

  35. Vandoorn TL et al (2013) Review of primary control strategies for islanded microgrids with power-electronic interfaces. Renew Sustain Energy Rev 19:613–628

    Article  Google Scholar 

  36. Coelho EAA, Cortizo PC, Garcia PFD (2002) Small-signal stability for parallel-connected inverters in stand-alone AC supply systems. IEEE Trans Ind Appl 38(2):533–542

    Article  Google Scholar 

  37. Majumder R et al (2010) Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop. IEEE Trans Power Syst 25(2):796–808

    Article  Google Scholar 

  38. Mehrizi-Sani A, Iravani R (2010) Potential-function based control of a microgrid in islanded and grid-connected modes. IEEE Trans Power Syst 25(4):1883–1891

    Article  Google Scholar 

  39. Barik MA, Pota HR, Ravishankar J (2013) A decentralized coordinated controller for load sharing in a microgrid with renewable generation. In: IEEE power and energy society general meeting pp 1–5

    Google Scholar 

  40. He J, Li YW (2012) An enhanced microgrid load demand sharing strategy. IEEE Trans Power Electron 27(9):3984–3995

    Article  Google Scholar 

  41. Hua C-C, Liao K-A, Lin J-R (2002) Parallel operation of inverters for distributed photovoltaic power supply system. In: IEEE 33rd annual power electronics specialists conference, pp 1979–1983

    Google Scholar 

  42. Lee CT, Chu CC, Cheng PT (2013) A new droop control method for the autonomous operation of distributed energy resource interface converters. IEEE Trans Power Electron 28(4):1980–1993

    Article  Google Scholar 

  43. Guerrero JM et al (2005) Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans Industr Electron 52(4):1126–1135

    Article  Google Scholar 

  44. Chiang SJ, Yen CY, Chang KT (2001) A multimodule parallelable series-connected PWM voltage regulator. IEEE Trans Industr Electron 48(3):506–516

    Article  Google Scholar 

  45. Vandoorn TL et al (2011) Active load control in islanded microgrids based on the grid voltage. IEEE Trans Smart Grid 2(1):139–151

    Article  Google Scholar 

  46. Vandoorn TL et al (2011) A control strategy for islanded microgrids with DC-link voltage control. IEEE Trans Power Delivery 26(2):703–713

    Article  MathSciNet  Google Scholar 

  47. Siri K, Lee CQ, Wu TF (1992) Current distribution control for parallel connected converters. II. IEEE Trans Aerosp Electron Syst 28(3):841–851

    Article  Google Scholar 

  48. Chen J-F, Chu C-L (1995) Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation. IEEE Trans Power Electron 10(5):547–558

    Article  Google Scholar 

  49. Banda J, Siri K (1995) Improved central-limit control for parallel-operation of DC–DC power converters. In: 26th Annual IEEE power electronics specialists conference, pp 1104–1110

    Google Scholar 

  50. Milan P (2004) Power quality and control aspects of parallel connected inverters in distributed generation. Imperial College University of London

    Google Scholar 

  51. Prodanovic M, Green TC (2006) High-quality power generation through distributed control of a power park microgrid. IEEE Trans Industr Electron 53(5):1471–1482

    Article  Google Scholar 

  52. Shanxu D et al (1999) Parallel operation control technique of voltage source inverters in UPS. In: Proceedings of the IEEE international conference on power electronics and drive systems, pp 883–887

    Google Scholar 

  53. Sun X, Lee YS, Xu D (2003) Modeling, analysis, and implementation of parallel multi-inverter systems with instantaneous average-current-sharing scheme. IEEE Trans Power Electron 18(3):844–856

    Article  Google Scholar 

  54. Roslan AM et al (2011) Improved instantaneous average current-sharing control scheme for parallel-connected inverter considering line impedance impact in microgrid networks. IEEE Trans Power Electron 26(3):702–716

    Article  Google Scholar 

  55. Chen Y-K et al (2003) ACSS for paralleled multi-inverter systems with DSP-based robust controls. IEEE Trans Aerosp Electron Syst 39(3):1002–1015

    Article  Google Scholar 

  56. Xing Y et al (2002) Novel control for redundant parallel UPSs with instantaneous current sharing. In: Proceedings of the power conversion conference, pp 959–963

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Barik .

Editor information

Editors and Affiliations

Appendix-I: List of Symbols

Appendix-I: List of Symbols

Symbols

Variable names

s ab

Power flow from node a to b

P ab

Real power flow from node a to b

Q ab

Reactive power flow from node a to b

i ab

Current flow from node a to b

R

Line resistance

X

Line reactance

z

Line impedance

Z

Magnitude of the line impedance

θ

Phase angle of the line impedance

Y

Line admittance

z D

Virtual impedance

v

Terminal voltage/output voltage of a generator

v a

Voltage of node a

v b

Voltage of node b

v r

Reference voltage of a generator

v l

Load voltage

v n

Terminal voltage of the nth generator

v e

Voltage error term

V

Terminal voltage magnitude

V a

Voltage magnitude of node a

V b

Voltage magnitude of node b

V r

Reference value for V

V g

RMS value of terminal voltage

V dc

DC-link voltage

V dr

Direct axis voltage reference

V qr

Quadratic axis voltage reference

V g, nom

Nominal value of RMS voltage

V dc, nom

Nominal value of DC-link voltage

∆V dr

Supplementary control signal for modifying direct axis voltage reference

V′ dr

Modified direct axis voltage reference

δ

Bus angle

δ a

Bus angle of node a

δ b

Bus angle of node b

δ r

Reference value for δ

δ ab

Bus angle difference between nodes a and b

i

Output current of a generator

i r

Reference current

i l

Total load current

i n

Output current of the nth generator

P

Real power injection to the grid

Q

Reactive power injection to the grid

P r

Reference value for P

Q r

Reference value for Q

P′

Modified real power injection to the grid

Q′

Modified reactive power injection to the grid

P dc

DC-link power

P av

Average power

P dc, nom

Nominal value of DC-link power

G r

Rating of generator

W

Weighting factor of the generators

C

Control signal

C LF

Control signal from central controller

C HF

Control signal from local controller

m, k p and k q

Constants

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Barik, M.A., Pota, H.R., Ravishankar, J. (2014). Power Management of Low and Medium Voltage Networks with High Density of Renewable Generation. In: Hossain, J., Mahmud, A. (eds) Renewable Energy Integration. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-27-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-27-9_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-26-2

  • Online ISBN: 978-981-4585-27-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics