Skip to main content

Power Flow Analysis and Reactive Power Compensation of Grid Connected Wind Energy Conversion Systems

  • Chapter
  • First Online:
Renewable Energy Integration

Part of the book series: Green Energy and Technology ((GREEN))

  • 3688 Accesses

Abstract

The power flow analysis is the basic tool for analyzing the steady state operation of any power system. It also provides the necessary initial conditions to investigate the dynamic performance of the system. This chapter discusses the power flow analysis of grid connected wind energy conversion systems (WECS). The power flow analysis with WECS is quite complicated, unlike the analysis with conventional sources, because: 1. The power injected into the grid by WECS depends on the instantaneous wind speed, which varies unpredictably. 2. Most WECS use induction generators. Therefore, the operating slip of the machine has to be determined. The machine operates at a slip for which the mechanical power developed by the turbine is equal to the electrical power developed by the induction generator. This chapter outlines two methods (1) sequential method of power flow and (2) simultaneous method of power flow analysis for grid connected WECS. Both the methods of power flow are tested on a sample system and the results are presented. This chapter also looks into the effect of various types of reactive power compensation, namely, shunt, series and series-shunt compensation, on the steady state performance of WECS equipped with squirrel-cage induction generators. A cost effective method to strengthen the given network between the point of common coupling (PCC) and rest of the grid is proposed. The effect of compensation in improving the penetration level of wind energy into the grid is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liangzhong Y, Phill C, Laurent S, Xiao-Ping Z (2005) Congestion management of transmission systems using FACTS. In: IEEE/PES transmission and distribution conference and exhibition, Asia and Pacific, Dalian, China, pp 1–5

    Google Scholar 

  2. Slootweg J, Polinder H, Kling W (2001) Initialization of wind turbine models in power system dynamics simulations. In: IEEE Porto power tech proceedings, p 7

    Google Scholar 

  3. Molzahn DK, Lesieutre BC (2013) Initializing dynamic power system simulations using eigenvalue formulations of the induction machine and power flow models. IEEE Trans Circuits Syst 60(3):690–702

    Google Scholar 

  4. Hatziargyriou D, Karakatsanis TS, Papadopoulos M (1993) Probablistic load flow in distribution systems containing wind power generation. IEEE Trans Power Syst 8(1):159–165

    Article  Google Scholar 

  5. Persaud S, Fox B, Flynn D (2000) Impact of remotely connected wind turbines on steady state operation of radial distribution networks. IEE Proc Gener Transm Distrib 147(3):157–163

    Article  Google Scholar 

  6. Meliopoulos APS (2001) Distributed energy sources: needs for analysis and design tools. In: IEEE power engineering society summer meeting, pp 548–550

    Google Scholar 

  7. Boulaxis NG, Papathanassiou SA, Papadopoulos MP (2002) Wind turbine effect on the voltage profile of distribution networks. Renewable Energy 25:401–415

    Article  Google Scholar 

  8. Muljadi E, Wan Y, Butterfield CP, Parsons B (2002) Study of a wind farm power system. NREL report

    Google Scholar 

  9. Divya KC, Nagendra Rao PS (2005) Models for wind turbine generating systems and their application in load flow studies. Electr Power Syst Res 76:844–856

    Article  Google Scholar 

  10. Fuerte-Esquivel CR, Acha E (1997) A Newton-type algorithm for the control of power flow in electrical power networks. IEEE Trans Power Syst 12:1474–1480

    Google Scholar 

  11. Liu Y, Wang W, Xu1 L, Ni P, Wang L (2008) Research on power flow algorithm for power system including wind farm. In: IEEE International Conference on Electrical Machines and Systems ICEMS, pp 2551–3255

    Google Scholar 

  12. Feijóo AE (2009). On PQ models for asynchronous wind turbines. IEEE Trans Power Syst 24(4):1890–1891

    Google Scholar 

  13. Feijoo AE, Cidras J (2000) Modeling of wind farms in the load flow analysis. IEEE Trans Power Syst 15(1):110–115

    Article  Google Scholar 

  14. Pecas JA, Maciel FP, Cidras J (1991) Simulation of MV distribution networks with asynchronous local generation sources. In: Proceedings of IEEE Melecom

    Google Scholar 

  15. Cidras J, Martinez JA, Pecas JA, Maciel FP (1992) Modelling of nonlinear nodal admittances in load flow analysis. In: Proceedings IFAC

    Google Scholar 

  16. Salem E, Mohammed B, Joydeep M (2012) Power flow analysis of distribution systems with embedded induction generators. In: 44th North American power symposium, Sept 9–11, Illinois

    Google Scholar 

  17. EI-Sadek MZ, Dessauky MM, Mahmaud GA, Rashed WI (1997) Load representation for steady-state voltage stability studies. Electr Power Syst Res 43:187–195

    Google Scholar 

  18. Jayashri R, Kumudini Devi RP (2006) Analysis of the impact of interconnecting wind turbine generators to the utility grid. Wind Eng 30:303–315

    Article  Google Scholar 

  19. Lubosny Z (2003) Wind turbine operation in electric power systems advanced modelling. Springer, Berlin

    Google Scholar 

  20. Chompoo-inwai C, Lee Wei-Jen, Fuangfoo Pradit, Williams Mitch, Liao James R (2005) System impact study for the interconnection of wind generation and utility system. IEEE Trans Ind Appl 41(1):163–168

    Article  Google Scholar 

  21. Laughton MA, Warne DJ (2003) Electrical engineer’s reference book, 16th edn. Elsevier, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ravishankar .

Editor information

Editors and Affiliations

Appendices

Appendix I

Data for 9-Bus Radial System

1. Transmission Line Data (All Lines)

Resistance

0.24 Ω/km

Reactance

0.48 Ω/km

Susceptance

2.80 μS/km

Length

20.0 km

Table A.1 Transformer data

Parameter

Load transformer data (all)

Step up transformer data (at the wind bus)

Feeding transformer data

Rated apparent power

0.63 MVA

1.0 MVA

25 MVA

Rated voltage of MV side

15 kV

15 kV

110 kV

Rated voltage of LV side

0.4 kV

0.69 kV

15 kV

Nominal short-circuit voltage

6 %

6 %

11 %

Copper loss at rated power

6 kW

13.58 kW

110 kW

2. Load Data (All Loads)

0.150 + j0.147 MVA

3. Coefficients of C P —λ Curve

C1

0.5

C2

67.56

C3

0.4

C4

0

C5

1.517

C6

16.286

Gear box ratio

67.5

Fig. A.1
figure 25

CP—λ curve for the considered wind turbine

Asynchronous Generator Data (Δ-Connection)

Stator resistance

0.0034 Ω

Rotor resistance

0.003 Ω

Stator leakage reactance

0.055 Ω

Rotor leakage reactance

0.042 Ω

Magnetizing reactance

1.6 Ω

Appendix II

Jacobian Matrix for the 9-bus System

For the system considered the Jacobian is a (17 × 17) matrix as below. The numbers in the matrix represent the row and column of the elements. The analytical expressions for these elements are given in the subsequent sections.

$$ \left[ {\begin{array}{*{20}c} {(1,1)} & \cdots & {(1,8)} & {} & {(1,9)} & \cdots & {(1,16)} & {} & {(1,17)} \\ \vdots & { \ldots J_{1} \ldots } & \vdots & {} & \vdots & { \ldots J_{2} \ldots } & \vdots & {} & { \ldots J_{5} \ldots } \\ {(8,1)} & \cdots & {(8,8)} & {} & {(8,9)} & \cdots & {(8,16)} & {} & {(8,17)} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {(9,1)} & {} & {(9,8)} & {} & {(9,9)} & {} & {(9,16)} & {} & {(9,17)} \\ \vdots & { \ldots J_{3} \ldots } & \vdots & {} & \vdots & { \ldots J_{4} \ldots } & \vdots & {} & { \ldots J_{6} \ldots } \\ {(16,1)} & {} & {(16,8)} & {} & {(16,9)} & {} & {(16,16)} & {} & {(16,17)} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {(17,1)} & { \ldots J_{7} \ldots } & {(17,8)} & {} & {(17,9)} & { \ldots J_{8} \ldots } & {(17,16)} & {} & {(17,17) J_{9} } \\ \end{array} } \right] $$

1 Elements of J 1

$$ \frac{{\partial P_{i} }}{{\partial \theta_{i} }} = imag\left[ {\mathop \sum \limits_{j \ne i} V_{i}^{*} V_{j} Y_{ij} } \right] $$
$$ \frac{{\partial P_{i} }}{{\partial \theta_{j} }} = - imag\left[ {\mathop \sum \nolimits V_{i}^{*} V_{j} Y_{ij} } \right] $$

2 Elements of J 2

$$ \frac{{\partial P_{i} }}{{\partial |V_{i} |}}|V_{i} | = real\left[ {\mathop \sum \limits_{j \ne i} V_{i}^{*} V_{j} Y_{ij} } \right] + 2|V_{i} |^{2} real\left( {Y_{ij} } \right) $$
$$ \frac{{\partial P_{i} }}{{\partial |V_{j} |}}|V_{j} | = real\left[ {\mathop \sum \nolimits V_{i}^{*} V_{j} Y_{ij} } \right] $$

Diagonal element for WECS bus (bus 9),

$$ J\left( {8,16} \right) = J\left( {8,16} \right) - \frac{{2|V_{9} |^{2} r_{e} }}{{(r_{e}^{2} + x_{e}^{2} )}} $$

3 Elements of J 3

$$ \frac{{\partial Q_{i} }}{{\partial \theta_{i} }} = real\left[ {\mathop \sum \limits_{j \ne i} V_{i}^{*} V_{j} Y_{ij} } \right] $$
$$ \frac{{\partial Q_{i} }}{{\partial \theta_{j} }} = - real\left[ {\mathop \sum \nolimits V_{i}^{*} V_{j} Y_{ij} } \right] $$

4 Elements of J 4

$$ \frac{{\partial Q_{i} }}{{\partial |V_{i} |}}|V_{i} | = - imag\left[ {\mathop \sum \limits_{j \ne i} V_{i}^{*} V_{j} Y_{ij} } \right] - 2|V_{i} |^{2} real\left( {Y_{ij} } \right) $$
$$ \frac{{\partial Q_{i} }}{{\partial |V_{j} |}}|V_{j} | = - imag\left[ {\mathop \sum \nolimits V_{i}^{*} V_{j} Y_{ij} } \right] $$

Diagonal element for WECS bus (bus 9),

$$ J\left( {16,16} \right) = J\left( {16,16} \right) - \frac{{2|V_{9} |^{2} x_{e} }}{{(r_{e}^{2} + x_{e}^{2} )}} $$
$$ {\text{where}}, Z_{e} = Z_{S} + Z_{m} ||Z_{r} $$

5 Elements of J 5

$$ J\left( {8,17} \right) = \frac{\partial }{\partial s}\left[ {\frac{{V^{2} r_{e} }}{{(r_{e}^{2} + x_{e}^{2} )}}} \right] = \frac{{|V_{9} |^{2} }}{{(r_{e}^{2} + x_{e}^{2} )^{2} }}\left[ {\left( {x_{e}^{2} - r_{e}^{2} } \right)\frac{{\partial r_{e} }}{\partial s} - 2r_{e} x_{e} \frac{{\partial x_{e} }}{\partial s}} \right] $$

6 Elements of J 6

$$ J\left( {16,17} \right) = \frac{\partial }{\partial s}\left[ {\frac{{ - V^{2} r_{e} }}{{(r_{e}^{2} + x_{e}^{2} )}}} \right] = \frac{{ - |V_{9} |^{2} }}{{(r_{e}^{2} + x_{e}^{2} )^{2} }}\left[ {\left( {r_{e}^{2} - x_{e}^{2} } \right)\frac{{\partial x_{e} }}{\partial s} - 2r_{e} x_{e} \frac{{\partial r_{e} }}{\partial s}} \right] $$

7 Elements of J 7 : 0

8 Elements of J 8

$$ J\left( {17,16} \right) = \frac{{2|V_{9} |x_{m}^{2} R_{r} /s}}{{\left[ {\left( {R_{1} + \frac{{R_{r} }}{s}} \right)^{2} + \left( {x_{1} + x_{r} } \right)^{2} } \right]\left[ {R_{s}^{2} + \left( {x_{s} + x_{m} } \right)^{2} } \right]}} $$
$$ {\text{where}}, Z_{1} = Z_{s} ||Z_{m} $$

9 Elements of J 9

$$ J\left( {17,17} \right) = \frac{{\partial \varDelta P_{m} }}{\partial s} $$

These are given by Eqs. (7.13) to (7.18).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ravishankar, J. (2014). Power Flow Analysis and Reactive Power Compensation of Grid Connected Wind Energy Conversion Systems. In: Hossain, J., Mahmud, A. (eds) Renewable Energy Integration. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-27-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-27-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-26-2

  • Online ISBN: 978-981-4585-27-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics