Skip to main content

Design Materials and Processes

  • Chapter
  • First Online:
  • 2138 Accesses

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

Abstract

One electron (lone pair) difference differentiates a nitride from an oxide substantially. Both O and N can create a bandgap and enlarge existing bandgaps; both modulate the ferromagnetism and work function by charge exchange and polarization. A nitride demonstrates generally high elasticity, self-lubricity, and corrosion resistance. N creates tensile but C compressive stress at a surface. A combination of both enhances diamond–metal adhesion. The non-bonding interaction associated with O, N, C, B, and F forms important gradient in organic and inorganic substances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Pauling, The Nature of the Chemical Bond, 3rd edn. (Cornell University Press, Ithaca, NY, 1960)

    Google Scholar 

  2. P. Schaaf, Laser nitriding of metals. Prog. Mater Sci. 47(1), 1–161 (2002)

    Article  Google Scholar 

  3. W.T. Zheng, C.Q. Sun, Electronic process of nitriding: mechanism and applications. Prog. Solid State Chem. 34(1), 1–20 (2006)

    Article  MATH  Google Scholar 

  4. X. Wang, W.T. Zheng, H.W. Tian, S.S. Yu, W. Xu, S.H. Meng, X.D. He, J.C. Han, C.Q. Sun, B.K. Tay, Growth, structural, and magnetic properties of iron nitride thin films deposited by dc magnetron sputtering. Appl. Surf. Sci. 220(1–4), 30–39 (2003)

    Article  ADS  Google Scholar 

  5. K.H. Jack, α′′ Fe16N2: a giant magnetic moment material?, in Nitrides and Oxynitrides, ed. by S. Hampshire, M.J. Pomeroy (Trans Tech Publications Ltd, Zurich-Uetikon, 2000), pp. 91–97

    Google Scholar 

  6. E.Y. Jiang, C.Q. Sun, J.E. Li, Y.G. Liu, The structures and magnetic-properties of fen films prepared by the facing targets sputtering method. J. Appl. Phys. 65(4), 1659–1663 (1989)

    Article  ADS  Google Scholar 

  7. J.M.D. Coey, H. Sun, Improved magnetic-properties by treatment of iron-based rare-earth intermetallic compounds in ammonia. J. Magn. Magn. Mater. 87(3), L251–L254 (1990)

    Article  ADS  Google Scholar 

  8. K. Okano, S. Koizumi, S.R.P. Silva, G.A.J. Amaratunga, Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond. Nature 381(6578), 140–141 (1996)

    Article  ADS  Google Scholar 

  9. W.T. Zheng, J.J. Li, X. Wang, X.T. Li, Z.S. Jin, B.K. Tay, C.Q. Sun, Electron emission of carbon nitride films and mechanism for the nitrogen-lowered threshold in cold cathode. J. Appl. Phys. 94(4), 2741–2745 (2003)

    Article  ADS  Google Scholar 

  10. B.K. Agrawal, S. Agrawal, P.S. Yadav, S. Kumar, Ab initio calculation of electronic properties of Ga1-xAlxN alloys. J. Phys. Condens. Matter 9(8), 1763–1775 (1997)

    Article  ADS  Google Scholar 

  11. Z.Q. Yang, Z.Z. Xu, A theoretical study of electronic and optical properties in wurtzite GaN. J. Phys. Condens. Matter 8(43), 8303–8308 (1996)

    Article  ADS  Google Scholar 

  12. C.L. Bai, Scanning Tunneling Microscopy and its Applications, vol. 32. Springer Series in Surface Science (Springer, Berlin, 1995)

    Google Scholar 

  13. F.A. Ponce, D.P. Bour, NItride-based semiconductors for blue and green light-emitting devices. Nature 386(6623), 351–359 (1997)

    Article  ADS  Google Scholar 

  14. C.Q. Sun, B.K. Tay, S.P. Lau, X.W. Sun, X.T. Zeng, S. Li, H.L. Bai, H. Liu, Z.H. Liu, E.Y. Jiang, Bond contraction and lone pair interaction at nitride surfaces. J. Appl. Phys. 90(5), 2615–2617 (2001)

    Article  ADS  Google Scholar 

  15. Y.Q. Fu, C.Q. Sun, B.B. Yan, H.J. Du, Carbon turns the tensile surface stress of Ti to be compressive. J. Phys. D-Appl. Phys. 34(24), L129–L132 (2001)

    Article  ADS  Google Scholar 

  16. M. Sotto, S. Gauthier, F. Pourmir, S. Rousset, J. Klein, LEED study of activated nitrogen adsorption on (100) and (h11) faces of copper. Surf. Sci. 371(1), 36–44 (1997)

    Article  ADS  Google Scholar 

  17. S. Schwegmann, A.P. Seitsonen, H. Dietrich, H. Bludau, H. Over, K. Jacobi, G. Ertl, The adsorption of atomic nitrogen on Ru(0001): geometry and energetics. Chem. Phys. Lett. 264(6), 680–686 (1997)

    Article  ADS  Google Scholar 

  18. V.M. Bermudez, Functionalizing the GaN(0001)-(1x1) surface II. Chemisorption of 3-pyrroline. Surf. Sci. 499(2–3), 124–134 (2002)

    Article  ADS  Google Scholar 

  19. D. Caceres, I. Vergara, R. Gonzalez, E. Monroy, F. Calle, E. Munoz, F. Omnes, Nanoindentation on AlGaN thin films. J. Appl. Phys. 86(12), 6773–6778 (1999)

    Article  ADS  Google Scholar 

  20. H. Kamimura, E.M. Matsuno, H. Ushio, Com. Cond. Matt. Phys. 15 (1992)

    Google Scholar 

  21. S. Veprek, The search for novel, superhard materials. J. Vac. Sci. Technol. A-Vac. Surf. Films 17(5), 2401–2420 (1999)

    Google Scholar 

  22. T. Malkow, Critical observations in the research of carbon nitride. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 292(1), 112–124 (2000)

    Article  Google Scholar 

  23. Q. Lv, C.B. Cao, C. Li, J.T. Zhang, H.X. Zhu, X. Kong, X.F. Duan, Formation of crystalline carbon nitride powder by a mild solvothermal method. J. Mater. Chem. 13(6), 1241–1243 (2003)

    Article  Google Scholar 

  24. P.J. Jennings, C.Q. Sun, in The Surface Analysis Methods in Materials Science, ed. by D.J. O’Connor, B.A. Sexton, R.C. Smart, (Springer, Berlin, New York, 2002)

    Google Scholar 

  25. T. Hughbanks, Y.C. Tian, On the structure and composition of carbon nitride. Solid State Commun. 96(5), 321–325 (1995)

    Article  ADS  Google Scholar 

  26. D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides. Science 271(5245), 53–55 (1996)

    Article  ADS  Google Scholar 

  27. C.M. Niu, Y.Z. Lu, C.M. Lieber, Experimental realization of the covalent solid carbon nitride. Science 261(5119), 334–337 (1993)

    Article  ADS  Google Scholar 

  28. Y. Zhang, H. Sun, C.F. Chen, Strain dependent bonding in solid C3N4: high elastic moduli but low strength. Phys. Rev. B 73(6), 064109 (2006)

    Article  ADS  Google Scholar 

  29. E. Broitman, W.T. Zheng, H. Sjostrom, I. Ivanov, J.E. Greene, J.E. Sundgren, Stress development during deposition of CNx thin films. Appl. Phys. Lett. 72(20), 2532–2534 (1998)

    Article  ADS  Google Scholar 

  30. P.J. Jennings, in The Surface Analysis Methods in Materials Science, ed. by D.J. O’Connor, B.A. Sexton, R.C. Smart (Springer, Berlin, 1992)

    Google Scholar 

  31. S. Veprek, Electronic and mechanical properties of nanocrystalline composites when approaching molecular size. Thin Solid Films 297(1–2), 145–153 (1997)

    Article  ADS  Google Scholar 

  32. C. Ossadnik, S. Veprek, I. Gregora, Applicability of Raman scattering for the characterization of nanocrystalline silicon. Thin Solid Films 337(1–2), 148–151 (1999)

    Article  ADS  Google Scholar 

  33. X.T. Zeng, S. Zhang, C.Q. Sun, Y.C. Liu, Nanometric-layered CrN/TiN thin films: mechanical strength and thermal stability. Thin Solid Films 424(1), 99–102 (2003)

    Article  ADS  Google Scholar 

  34. X.T. Zeng, TiN/NbN superlattice hard coatings deposited by unbalanced magnetron sputtering. Surf. Coat. Technol. 113(1–2), 75–79 (1999)

    Article  Google Scholar 

  35. Y.J. Tian, B. Xu, D.L. Yu, Y.M. Ma, Y.B. Wang, Y.B. Jiang, W.T. Hu, C.C. Tang, Y.F. Gao, K. Luo, Z.S. Zhao, L.M. Wang, B. Wen, J.L. He, Z.Y. Liu, Ultrahard nanotwinned cubic boron nitride. Nature 493(7432), 385–388 (2013)

    Article  ADS  Google Scholar 

  36. K.H. Jack, The occurrence and the crystal structure of α″-iron nitride: a new type of interstitial alloy formed during the tempering of nitrogen-martensite. Proc. Royal Soc. Lond. Ser. Math. Phys. Sci. 208(1093), 216–224 (1951)

    Article  ADS  Google Scholar 

  37. J.P. Zhou, D. Li, Y.S. Gu, X.R. Chang, C.H. Zhao, F.H. Li, L.J. Qiao, Z.H. Tian, G.D. Fang, Q.H. Song, The structure and magnetic properties of Fe-N thin films. Sci. China Ser. A-Math. Phys. Astron. 45(2), 255–263 (2002)

    Google Scholar 

  38. W.H. Zhong, C.Q. Sun, S. Li, Size effect on the magnetism of nanocrystalline Ni films at ambient temperature. Solid State Commun. 130(9), 603–606 (2004)

    Article  ADS  Google Scholar 

  39. H.G. Pan, F.M. Yang, Y. Chen, X.F. Han, N. Tang, C.P. Chen, Q.D. Wang, Magnetic properties of a new series of rare-earth iron nitrides R(3)(Fe, Mo)(29)N-x (R = Ce, Nd, Sm, Gd, Tb, Dy or Y). J. Phys. Condens. Matter 9(11), 2499–2505 (1997)

    Article  ADS  Google Scholar 

  40. D.C. Sun, C. Lin, E.Y. Jiang, Epitaxially grown Fe16N2 single-crystal films with high saturation magnetization-prepared by facing targets sputtering. J. Phys. Condens. Matter 7(18), 3667–3674 (1995)

    Article  ADS  Google Scholar 

  41. E.Y. Jiang, D.C. Sun, C. Lin, M.B. Tian, H.L. Bai, S.L. Ming, Facing targets sputtered Fe-N gradient films. J. Appl. Phys. 78(4), 2596–2600 (1995)

    Article  ADS  Google Scholar 

  42. R.A. Street, Hydrogenated amorphous silicon (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  43. I. Chambouleyron, A.R. Zanatta, Nitrogen in germanium. J. Appl. Phys. 84(1), 1–30 (1998)

    Article  ADS  Google Scholar 

  44. P. Hammer, N.M. Victoria, F. Alvarez, Electronic structure of hydrogenated carbon nitride films. J. Vac. Sci. Technol. A-Vac. Surf. Films 16(5), 2941–2949 (1998)

    Google Scholar 

  45. D.C. Reynolds, D.C. Look, B. Jogai, H. Morkoc, Similarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN. Solid State Commun. 101(9), 643–646 (1997)

    Article  ADS  Google Scholar 

  46. I.G. Austin, W.A. Jackson, T.M. Searle, P.K. Bhat, R.A. Gibson, Photoluminescence properties of a-SiNx: H-alloys. Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. 52(3), 271–288 (1985)

    Google Scholar 

  47. A.R. Zanatta, I. Chambouleyron, Nitrogen in the amorphous-germanium network: from high dilution to the alloy phase. Phys. Rev. B 48(7), 4560–4570 (1993)

    Article  ADS  Google Scholar 

  48. J. Vilcarromero, F.C. Marques, Influence of the deposition conditions on the properties of amorphous germanium nitrogen alloys. Phys. Status Solidi B-Basic Res. 192(2), 543–547 (1995)

    Article  ADS  Google Scholar 

  49. S. Hasegawa, M. Matsuda, Y. Kurata, Bonding configuration and defects in amorphous SiNx-H films. Appl. Phys. Lett. 58(7), 741–743 (1991)

    Article  ADS  Google Scholar 

  50. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

  51. D. Jin, P. Hing, C.Q. Sun, Growth dynamics and electric properties of PbTi0.1Zr0.9O3 ceramics doped with cerium oxide. J. Phys. D-Appl. Phys. 33(6), 744–752 (2000)

    Article  ADS  Google Scholar 

  52. C.Q. Sun, D. Jin, J. Zhou, S. Li, B.K. Tay, S.P. Lau, X.W. Sun, H.T. Huang, P. Hing, Intense and stable blue-light emission of Pb(ZrxTi1-x)O-3. Appl. Phys. Lett. 79(8), 1082–1084 (2001)

    Article  ADS  Google Scholar 

  53. G.A. Hirata, J. McKittrick, D. Devlin, Growth and analysis of red, green and blue luminescent oxide thin films. Surf. Rev. Lett. 5(1), 413–417 (1998)

    Article  Google Scholar 

  54. A. Kudo, H. Yanagi, H. Hosono, H. Kawazoe, SrCu2O2: a p-type conductive oxide with wide band gap. Appl. Phys. Lett. 73(2), 220–222 (1998)

    Article  ADS  Google Scholar 

  55. Y.D. Jiang, F.L. Zhang, C.J. Summers, Z.L. Wang, Synthesis and properties of Sr2CeO4 blue emission powder phosphor for field emission displays. Appl. Phys. Lett. 74(12), 1677–1679 (1999)

    Article  ADS  Google Scholar 

  56. K.J. Price, L.R. Sharpe, L.E. McNeil, E.A. Irene, Electroluminescence in silicon oxynitride films. J. Appl. Phys. 86(5), 2638–2641 (1999)

    Article  ADS  Google Scholar 

  57. Y.Q. Wang, T.P. Zhao, J. Liu, G.G. Qin, Near-ultraviolet and near-infrared electroluminescence from an indium-tin-oxide film native Si oxide/p-Si structure. Appl. Phys. Lett. 74(25), 3815–3817 (1999)

    Article  ADS  Google Scholar 

  58. S. Yuan, C. Jagadish, Y. Kim, Y. Chang, H.H. Tan, R.M. Cohen, M. Petravic, L.V. Dao, M. Gal, M.C.Y. Chan, E.H. Li, O. Jeong-Seok, P.S. Zory, Anodic-oxide-induced intermixing in GaAs-AlGaAs quantum-well and quantum-wire structures. IEEE J. Sel. Top. Quantum Electron. 4(4), 629–635 (1998)

    Article  Google Scholar 

  59. C.X. Xu, X.W. Sun, B.J. Chen, C.Q. Sun, B.K. Tay, S.X.S. Li, Aligned ZnO nanofibre array prepared by vapour transport in air. Chin. Phys. Lett. 20(8), 1319–1322 (2003)

    Article  ADS  Google Scholar 

  60. M.L. Brongersma, A. Polman, K.S. Min, E. Boer, T. Tambo, H.A. Atwater, Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation. Appl. Phys. Lett. 72(20), 2577–2579 (1998)

    Article  ADS  Google Scholar 

  61. A.M. Liu, Microstructure and photoluminescence spectra of porous InP. Nanotechnology 12(3), L1–L3 (2001)

    Article  ADS  Google Scholar 

  62. M.A. Monclus, D.C. Cameron, A. Chowdhury, R. Barkley, M. Collins, Investigation of the valence band states of reactively sputtered carbon nitride films. Thin Solid Films 355, 79–84 (1999)

    Article  ADS  Google Scholar 

  63. J.J. Li, W.T. Zheng, C.Z. Gu, Z.S. Jin, Y.N. Zhao, X.X. Mei, Z.X. Mu, C. Dong, C.Q. Sun, Field emission enhancement of amorphous carbon films by nitrogen-implantation. Carbon 42(11), 2309–2314 (2004)

    Article  Google Scholar 

  64. T. Sugino, T. Yamamoto, C. Kimura, H. Murakami, M. Hirakawa, Field emission characteristics of carbon nanofiber improved by deposition of boron nitride nanocrystalline film. Appl. Phys. Lett. 80(20), 3808–3810 (2002)

    Article  ADS  Google Scholar 

  65. E. Hernandez, C. Goze, P. Bernier, A. Rubio, Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80(20), 4502–4505 (1998)

    Article  ADS  Google Scholar 

  66. J. Robertson, Mechanisms of electron field emission from diamond, diamond-like carbon, and nanostructured carbon. J. Vac. Sci. Technol., B 17(2), 659–665 (1999)

    Article  Google Scholar 

  67. A.T. Sowers, B.L. Ward, S.L. English, R.J. Nemanich, Field emission properties of nitrogen-doped diamond films. J. Appl. Phys. 86(7), 3973–3982 (1999)

    Article  ADS  Google Scholar 

  68. S.C. Lim, R.E. Stallcup, I.A. Akwani, J.M. Perez, Effects of O-2, H-2, and N-2 gases on the field emission properties of diamond-coated microtips. Appl. Phys. Lett. 75(8), 1179–1181 (1999)

    Article  ADS  Google Scholar 

  69. L.K. Cheah, X. Shi, E. Liu, B.K. Tay, Electron field emission properties of tetrahedral amorphous carbon films. J. Appl. Phys. 85(9), 6816–6821 (1999)

    Article  ADS  Google Scholar 

  70. C. Bandis, B.B. Pate, Simultaneous field emission and photoemission from diamond. Appl. Phys. Lett. 69(3), 366–368 (1996)

    Article  ADS  Google Scholar 

  71. M.W. Geis, N.N. Efremow, K.E. Krohn, J.C. Twichell, T.M. Lyszczarz, R. Kalish, J.A. Greer, M.D. Tabat, A new surface electron-emission mechanism in diamond cathodes. Nature 393(6684), 431–435 (1998)

    Article  ADS  Google Scholar 

  72. W. Zhu, G.P. Kochanski, S. Jin, Low-field electron emission from undoped nanostructured diamond. Science 282(5393), 1471–1473 (1998)

    Article  Google Scholar 

  73. A. Beiser, Perspective of Modern Physics, 18th edn. (McGraw-Hill, Singapore, 1988)

    Google Scholar 

  74. M.J. Rutter, J. Robertson, Ab initio calculation of electron affinities of diamond surfaces. Phys. Rev. B 57(15), 9241–9245 (1998)

    Article  ADS  Google Scholar 

  75. G.A.J. Amaratunga, S.R.P. Silva, Nitrogen containing hydrogenated amorphous carbon for thin-film field emission cathodes. Appl. Phys. Lett. 68(18), 2529–2531 (1996)

    Article  ADS  Google Scholar 

  76. P.R. Briddon, R. Jones, Theory of impurities in diamond. Phys. B 185(1–4), 179–189 (1993)

    Article  ADS  Google Scholar 

  77. W.T. Zheng, C.Q. Sun, B.K. Tay, Modulating the work function of carbon by N or O addition and nanotip fabrication. Solid State Commun. 128(9–10), 381–384 (2003)

    Article  ADS  Google Scholar 

  78. H. Riege, I. Boscolo, J. Handerek, U. Herleb, Features and technology of ferroelectric electron emission. J. Appl. Phys. 84(3), 1602–1617 (1998)

    Article  ADS  Google Scholar 

  79. I. Stolichnov, A.K. Tagantsev, E.L. Colla, N. Setter, Cold-field-emission test of the fatigued state of Pb(ZrxTi1-x)O-3 films. Appl. Phys. Lett. 73(10), 1361–1363 (1998)

    Article  ADS  Google Scholar 

  80. W.E. Pickett, Negative electron-affinity and low work function surface: cesium on oxygenated diamond(100). Phys. Rev. Lett. 73(12), 1664–1667 (1994)

    Article  ADS  Google Scholar 

  81. L.W. Lin, The role of oxygen and fluorine in the electron-emission of some kinds of cathodes. J. Vac. Sci. Technol., A Vac. Surf. Films 6(3), 1053–1057 (1988)

    Article  ADS  Google Scholar 

  82. N. Park, S.W. Han, J. Ihm, Effects of oxygen adsorption on carbon nanotube field emitters. Phys. Rev. B 64(12), 125401 (2001)

    Article  ADS  Google Scholar 

  83. S.C. Kung, K.C. Hwang, I.N. Lin, Oxygen and ozone oxidation-enhanced field emission of carbon nanotubes. Appl. Phys. Lett. 80(25), 4819–4821 (2002)

    Article  ADS  Google Scholar 

  84. A. Wadhawan, R.E. Stallcup, K.F. Stephens, J.M. Perez, I.A. Akwani, Effects of O-2, Ar, and H-2 gases on the field-emission properties of single-walled and multiwalled carbon nanotubes. Appl. Phys. Lett. 79(12), 1867–1869 (2001)

    Article  ADS  Google Scholar 

  85. C.E. Johnson, J.M. Bennett, M.P. Nadler, Oxidation of diamond windows. J. Mater. Res. 10(10), 2555–2563 (1995)

    Article  ADS  Google Scholar 

  86. A. Joshi, R. Nimmagadda, J. Herrington, Oxidation-kinetics of diamond, graphite, and chemical vapor-deposited diamond films by thermal gravimetry. J. Vac. Sci. Technol., A Vac. Surf. Films 8(3), 2137–2142 (1990)

    Article  ADS  Google Scholar 

  87. W. Zhu, X.H. Wang, D.J. Pickrell, A.R. Badzian, R. Messier, The oxidation of CVD diamond films. Carbon 28(6), 796 (1990)

    Article  Google Scholar 

  88. K. Bobrov, H. Schechter, A. Hoffman, M. Folman, Molecular oxygen adsorption and desorption from single crystal diamond (111) and (110) surfaces. Appl. Surf. Sci. 196(1–4), 173–180 (2002)

    Article  ADS  Google Scholar 

  89. K. Böer, Survey of Semiconductor Physics, vol. II (Van Nostrand Reinhold, New York, 1992)

    Book  Google Scholar 

  90. N.S. Xu, Y. Tzeng, R.V. Latham, Similarities in the cold electron-emission characteristics of diamond-coated molybdenum electrodes and polished bulk graphite surfaces. J. Phys. D-Appl. Phys. 26(10), 1776–1780 (1993)

    Article  ADS  Google Scholar 

  91. L.K. Pan, H.B. Li, Z. Sun, C.Q. Sun, Surface metalization on the photo-emission, photo-absorption and core-level shift of nanosolid silicon. Surf. Rev. Lett. 16(2), 265–270 (2009)

    Article  Google Scholar 

  92. P. Hartman, Non-uniform distribution of faces in a zone. Z. Kristall. 121(1), 78–80 (1965)

    Article  Google Scholar 

  93. F.K. de Theije, E. van Veenendaal, W.J.P. van Enckevort, E. Vlieg, Oxidative etching of cleaved synthetic diamond 111 surfaces. Surf. Sci. 492(1–2), 91–105 (2001)

    Article  Google Scholar 

  94. C.Q. Sun, H. Xie, W. Zhang, H. Ye, P. Hing, Preferential oxidation of diamond {111}. J. Phys. D-Appl. Phys. 33(17), 2196–2199 (2000)

    Article  ADS  Google Scholar 

  95. Y.K. Kim, K.Y. Lee, J.Y. Lee, Texture-controlled diamond films synthesized by microwave plasma-enhanced chemical vapour deposition. Thin Solid Films 272(1), 64–70 (1996)

    Article  ADS  Google Scholar 

  96. H.T. Ye, C.Q. Sun, H.T. Huang, P. Hing, Dielectric transition of nanostructured diamond films. Appl. Phys. Lett. 78(13), 1826–1828 (2001)

    Article  ADS  Google Scholar 

  97. C.Q. Sun, The sp hybrid bonding of C, N and O to the fcc(001) surface of nickel and rhodium. Surf. Rev. Lett. 7(3), 347–363 (2000)

    Article  Google Scholar 

  98. C.Q. Sun, Y.Q. Fu, B.B. Yan, J.H. Hsieh, S.P. Lau, X.W. Sun, B.K. Tay, Improving diamond-metal adhesion with graded TiCN interlayers. J. Appl. Phys. 91(4), 2051–2054 (2002)

    Article  ADS  Google Scholar 

  99. Y.Q. Fu, C.Q. Sun, H.J. Du, B.B. Yan, Crystalline carbonitride forms harder than the hexagonal Si-carbonitride crystallite. J. Phys. D-Appl. Phys. 34(9), 1430–1435 (2001)

    Article  ADS  Google Scholar 

  100. Y.Q. Fu, C.Q. Sun, H.J. Du, B.B. Yan, From diamond to crystalline silicon carbonitride: effect of introduction of nitrogen in CH4/H-2 gas mixture using MW-PECVD. Surf. Coat. Technol. 160(2–3), 165–172 (2002)

    Article  Google Scholar 

  101. D.H. Lu, M. Yi, S.K. Mo, A.S. Erickson, J. Analytis, J.H. Chu, D.J. Singh, Z. Hussain, T.H. Geballe, I.R. Fisher, Z.X. Shen, Electronic structure of the iron-based superconductor LaOFeP. Nature 455(7209), 81–84 (2008)

    Article  ADS  Google Scholar 

  102. C.Q. Sun, Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2(10), 1930–1961 (2010)

    Article  ADS  Google Scholar 

  103. I. Novak, B. Kovac, L. Klasinc, V.A. Ostrovski, Nitrogen lone pair interactions in organic molecules: a photoelectron spectroscopic study. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 59(8), 1725–1731 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Design Materials and Processes. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_8

Download citation

Publish with us

Policies and ethics