Skip to main content

Prospects

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

  • 2110 Accesses

Abstract

Understandings may apply to other areas containing short-range non-bonding interactions. Mechanism for water density oscillation applies to negative thermal expansion (NTE) as a consequence of specific heat disparity of the short-range interactions. Modulation of Coulomb repulsion could mediate intermolecular interaction that is responsible for electro- and magneto-melting, de- and anti-icing, etc. Coulomb mediation of H-bond interaction may mysterize Hofmeister series for protein dissociation, activation and deactivation of ion channeling. Density, H–O bond energy, and polarization modulate dielectric performance of water ice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, S. Shamoto, Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN. Phys. Rev. Lett. 101(20), 205901 (2008)

    Article  ADS  Google Scholar 

  2. A.L. Goodwin, M. Calleja, M.J. Conterio, M.T. Dove, J.S.O. Evans, D.A. Keen, L. Peters, M.G. Tucker, Colossal positive and negative thermal expansion in the framework material Ag3 Co(CN)(6). Science 319(5864), 794–797 (2008)

    Article  ADS  Google Scholar 

  3. A.C. McLaughlin, F. Sher, J.P. Attfield, Negative lattice expansion from the superconductivity-antiferromagnetism crossover in ruthenium copper oxides. Nature 436(7052), 829–832 (2005)

    Article  ADS  Google Scholar 

  4. J.S.O. Evans, Negative thermal expansion materials. J. Chem. Soc.-Dalton Trans. 19, 3317–3326 (1999)

    Article  Google Scholar 

  5. C. Martinek, F.A. Hummel, Linear thermal expansion of 3 tungstates. J. Am. Ceram. Soc. 51(4), 227 (1968)

    Google Scholar 

  6. T.A. Mary, J.S.O. Evans, T. Vogt, A.W. Sleight, Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 272(5258), 90–92 (1996)

    Article  ADS  Google Scholar 

  7. S. Stoupin, Y.V. Shvyd’ko, Thermal expansion of diamond at low temperatures. Phys. Rev. Lett. 104(8), 085901 (2010)

    Article  ADS  Google Scholar 

  8. A.W. Sleight, Compounds that contract on heating. Inorg. Chem. 37(12), 2854–2860 (1998)

    Article  Google Scholar 

  9. J.S.O. Evans, T.A. Mary, T. Vogt, M.A. Subramanian, A.W. Sleight, Negative thermal expansion in ZrW2O8 and HfW2O8. Chem. Mater. 8(12), 2809–2823 (1996)

    Article  Google Scholar 

  10. G. Ernst, C. Broholm, G.R. Kowach, A.P. Ramirez, Phonon density of states and negative thermal expansion in ZrW2O8. Nature 396(6707), 147–149 (1998)

    Article  ADS  Google Scholar 

  11. A.K.A. Pryde, K.D. Hammonds, M.T. Dove, V. Heine, J.D. Gale, M.C. Warren, Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7. J. Phys.-Condens. Matter 8(50), 10973–10982 (1996)

    Article  ADS  Google Scholar 

  12. Q.H. Tang, T.C. Wang, B.S. Shang, F. Liu, Thermodynamic properties and constitutive relations of crystals at finite temperature. Sci. Chin.-Phys. Mech. Astron. G55, 933 (2012)

    Google Scholar 

  13. Y.J. Su, H. Wei, R.G. Gao, Z. Yang, J. Zhang, Z.H. Zhong, Y.F. Zhang, Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper. Carbon 50(8), 2804–2809 (2012)

    Article  Google Scholar 

  14. P.W. Anderson, Ordering and antiferromagnetism in ferrites. Phys. Rev. 102(4), 1008–1013 (1956)

    Article  ADS  Google Scholar 

  15. D. Sherrington, S. Kirkpatrick, Solvable model of a spin-glass. Phys. Rev. Lett. 35(26), 1792–1796 (1975)

    Article  ADS  Google Scholar 

  16. K. Binder, A.P. Young, Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58(4), 801–976 (1986)

    Article  ADS  Google Scholar 

  17. J.D. Bryngelson, P.G. Wolynes, Spin glasses and the statistical mechanics of protein folding. Proc. Natl. Acad. Sci. 84(21), 7524–7528 (1987)

    Article  ADS  Google Scholar 

  18. J.T. Bartlett, A.P. Vandenheuvel, B.J. Mason, Growth of ice crystals in an electric field. Zeitschrift Fur Angewandte Mathematik Und Physik 14(5), 599 (1963)

    Google Scholar 

  19. D. Ehre, E. Lavert, M. Lahav, I. Lubomirsky, Water freezes differently on positively and negatively charged surfaces of pyroelectric materials. Science 327(5966), 672–675 (2010)

    Article  ADS  Google Scholar 

  20. M. Gavish, J.L. Wang, M. Eisenstein, M. Lahav, L. Leiserowitz, The role of crystal polarity in alpha-amino-acid crystals for induced nucleation of ice. Science 256(5058), 815–818 (1992)

    Article  ADS  Google Scholar 

  21. E.-M. Choi, Y.-H. Yoon, S. Lee, H. Kang, Freezing transition of interfacial water at room temperature under electric fields. Phys. Rev. Lett. 95(8), 085701 (2005)

    Article  ADS  Google Scholar 

  22. R.M. Namin, S.A. Lindi, A. Amjadi, N. Jafari, P. Irajizad, Experimental investigation of the stability of the floating water bridge. Phys. Rev. E 88(3), 033019 (2013)

    Article  ADS  Google Scholar 

  23. I.M. Svishchev, P.G. Kusalik, Electrofreezing of liquid water: a microscopic perspective. J. Am. Chem. Soc. 118(3), 649–654 (1996)

    Article  Google Scholar 

  24. R. Zangi, A.E. Mark, Electrofreezing of confined water. J. Chem. Phys. 120(15), 7123–7130 (2004)

    Article  ADS  Google Scholar 

  25. H. Qiu, W. Guo, Electromelting of confined monolayer ice. Phys. Rev. Lett. 110(19), 195701 (2013)

    Article  ADS  Google Scholar 

  26. W. Armstrong, Electrical phenomena The newcastle literary and philosophical society. Electr. Eng. 10, 153 (1893)

    Google Scholar 

  27. E.C. Fuchs, J. Woisetschlager, K. Gatterer, E. Maier, R. Pecnik, G. Holler, H. Eisenkolbl, The floating water bridge. J. Phys. D-Appl. Phys. 40(19), 6112–6114 (2007)

    Article  ADS  Google Scholar 

  28. R.C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M.E. Fontanella, F. Saija, Raman scattering measurements on a floating water bridge. J. Phys. D-Appl. Phys. 43(17), 175405 (2010)

    Article  ADS  Google Scholar 

  29. J. Woisetschlager, K. Gatterer, E.C. Fuchs, Experiments in a floating water bridge. Exp. Fluids 48(1), 121–131 (2010)

    Article  Google Scholar 

  30. E.C. Fuchs, Can a century old experiment reveal hidden properties of water? Water 2(3), 381–410 (2010)

    Article  ADS  Google Scholar 

  31. A. Widom, J. Swain, J. Silverberg, S. Sivasubramanian, Y.N. Srivastava, Theory of the Maxwell pressure tensor and the tension in a water bridge. Phys. Rev. E 80(1), 016301 (2009)

    Article  ADS  Google Scholar 

  32. A.A. Aerov, Why the water bridge does not collapse. Phys. Rev. E 84(3), 036314 (2011)

    Article  ADS  Google Scholar 

  33. G. Zhang, W. Zhang, H. Dong, Magnetic freezing of confined water. J. Chem. Phys. 133(13), 134703 (2010)

    Article  ADS  Google Scholar 

  34. Z. Zhou, H. Zhao, J. Han, Supercooling and crystallization of water under DC magnetic fields. CIESC J. 63(5), 1408–1410 (2012)

    Google Scholar 

  35. R. Cai, H. Yang, J. He, W. Zhu, The effects of magnetic fields on water molecular hydrogen bonds. J. Mol. Struct. 938(1–3), 15–19 (2009)

    Article  ADS  Google Scholar 

  36. Y. Fujimura, M. Iino, The surface tension of water under high magnetic fields. J. Appl. Phys. 103(12), 2940128 (2008)

    Article  Google Scholar 

  37. M. Chaplin. Water structure and science. http://www.lsbu.ac.uk/water/

  38. X. Zhang, T. Yan, B. Zou, C.Q. Sun, Mechano-freezing of the ambient water. http://arxiv.org/abs/1310.1441

  39. D. Rzesanke, J. Nadolny, D. Duft, R. Muller, A. Kiselev, T. Leisner, On the role of surface charges for homogeneous freezing of supercooled water microdroplets. Phys. Chem. Chem. Phys. 14(26), 9359–9363 (2012)

    Article  Google Scholar 

  40. W.J. Xie, Y.Q. Gao, A simple theory for the Hofmeister series. J. Phys. Chem. Lett. 4(24), 4247–4252 (2013)

    Google Scholar 

  41. E.K. Wilson, Hofmeister still mystifies. Chem. Eng. News Arch. 90(29), 42–43 (2012)

    Google Scholar 

  42. M. Randall, C.F. Failey, The activity coefficient of gases in aqueous salt solutions. Chem. Rev. 4(3), 271–284 (1927)

    Article  Google Scholar 

  43. M. Randall, C.F. Failey, The activity coefficient of non-electrolytes in aqueous salt solutions from solubility measurements. The salting-out order of the ions. Chem. Rev. 4(3), 285–290 (1927)

    Article  Google Scholar 

  44. M. Randall, C.F. Failey, The activity coefficient of the undissociated part of weak electrolytes. Chem. Rev. 4(3), 291–318 (1927)

    Article  Google Scholar 

  45. P. Lo Nostro, B.W. Ninham, Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112(4), 2286–2322 (2012)

    Article  Google Scholar 

  46. G. Imperato, E. Eibler, J. Niedermaier, B. Konig, Low-melting sugar-urea-salt mixtures as solvents for Diels-Alder reactions. Chem. Commun. 9, 1170–1172 (2005)

    Article  Google Scholar 

  47. M.D.A. Saldaña, V.H. Alvarez, A. Haldar, Solubility and physical properties of sugars in pressurized water. J. Chem. Thermodyn. 55, 115–123 (2012)

    Google Scholar 

  48. S. Park, M.D. Fayer, Hydrogen bond dynamics in aqueous NaBr solutions. Proc. Natl. Acad. Sci. U.S.A. 104(43), 16731–16738 (2007)

    Article  ADS  Google Scholar 

  49. Q. Sun, Raman spectroscopic study of the effects of dissolved NaCl on water structure. Vib. Spectrosc. 62, 110–114 (2012)

    Article  Google Scholar 

  50. F. Aliotta, M. Pochylski, R. Ponterio, F. Saija, G. Salvato, C. Vasi, Structure of bulk water from Raman measurements of supercooled pure liquid and LiCl solutions. Phys. Rev. B 86(13), 134301 (2012)

    Article  ADS  Google Scholar 

  51. S. Park, M.B. Ji, K.J. Gaffney, Ligand exchange dynamics in aqueous solution studied with 2DIR spectroscopy. J. Phys. Chem. B 114(19), 6693–6702 (2010)

    Article  Google Scholar 

  52. S. Park, M. Odelius, K.J. Gaffney, Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions. J. Phys. Chem. B 113(22), 7825–7835 (2009)

    Article  Google Scholar 

  53. K.J. Gaffney, M. Ji, M. Odelius, S. Park, Z. Sun, H-bond switching and ligand exchange dynamics in aqueous ionic solution. Chem. Phys. Lett. 504(1–3), 1–6 (2011)

    ADS  Google Scholar 

  54. C. Sun, D. Xu, D. Xue, Direct in situ ATR-IR spectroscopy of structural dynamics of NH4H2PO4 in aqueous solution. CrystEngComm 15(38), 7783–7791 (2013)

    Article  Google Scholar 

  55. P.C. Cross, J. Burnham, P.A. Leighton, The Raman spectrum and the structure of water. J. Am. Chem. Soc. 59, 1134–1147 (1937)

    Article  Google Scholar 

  56. M. Baumgartner, R.J. Bakker, Raman spectroscopy of pure H2O and NaCl-H2O containing synthetic fluid inclusions in quartz—a study of polarization effects. Mineral. Petrol. 95(1–2), 1–15 (2008)

    ADS  Google Scholar 

  57. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  Google Scholar 

  58. Y. Zhang, P. Cremer, Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10(6), 658–663 (2006)

    Article  Google Scholar 

  59. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)

    Article  Google Scholar 

  60. L.K. Pan, C.Q. Sun, T.P. Chen, S. Li, C.M. Li, B.K. Tay, Dielectric suppression of nanosolid silicon. Nanotechnology 15(12), 1802–1806 (2004)

    Article  ADS  Google Scholar 

  61. L.K. Pan, H.T. Huang, C.Q. Sun, Dielectric relaxation and transition of porous silicon. J. Appl. Phys. 94(4), 2695–2700 (2003)

    Article  ADS  Google Scholar 

  62. R. Tsu, D. Babic, Doping of a quantum-dot. Appl. Phys. Lett. 64(14), 1806–1808 (1994)

    Article  ADS  Google Scholar 

  63. J.W. Li, L.W. Yang, Z.F. Zhou, P.K. Chu, X.H. Wang, J. Zhou, L.T. Li, C.Q. Sun, Bandgap modulation in ZnO by size, pressure, and temperature. J. Phys. Chem. C 114(31), 13370–13374 (2010)

    Article  Google Scholar 

  64. L.K. Pan, Y.K. Ee, C.Q. Sun, G.Q. Yu, Q.Y. Zhang, B.K. Tay, Band-gap expansion, core-level shift, and dielectric suppression of porous silicon passivated by plasma fluorination. J. Vac. Sci. Technol. B 22(2), 583–587 (2004)

    Article  Google Scholar 

  65. G. Ouyang, C.Q. Sun, W.G. Zhu, Atomistic origin and pressure dependence of band gap variation in semiconductor nanocrystals. J. Phys. Chem. C 113(22), 9516–9519 (2009)

    Article  Google Scholar 

  66. G.H. Zuo, J. Hu, H.P. Fang, Effect of the ordered water on protein folding: an off-lattice Go$$($)over-bar-like model study. Phys. Rev. E 79(3), 031925 (2009)

    Article  ADS  Google Scholar 

  67. A. Kuffel, J. Zielkiewicz, Why the solvation water around proteins is more dense than bulk water. J. Phys. Chem. B 116(40), 12113–12124 (2012)

    Google Scholar 

  68. A. Twomey, R. Less, K. Kurata, H. Takamatsu, A. Aksan, In Situ spectroscopic quantification of protein-ice interactions. J. Phys. Chem. B 117(26), 7889–7897 (2013)

    Article  Google Scholar 

  69. I.V. Stiopkin, C. Weeraman, P.A. Pieniazek, F.Y. Shalhout, J.L. Skinner, A.V. Benderskii, Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474(7350), 192–195 (2011)

    Article  ADS  Google Scholar 

  70. I. Michalarias, I. Beta, R. Ford, S. Ruffle, J.C. Li, Inelastic neutron scattering studies of water in DNA. Appl. Phys. A Mater. Sci. Process. 74, s1242–s1244 (2002)

    Article  ADS  Google Scholar 

  71. T. Yan, S. Li, K. Wang, X. Tan, Z. Jiang, K. Yang, B. Liu, G. Zou, B. Zou, Pressure-induced phase transition in N–H…O hydrogen-bonded molecular crystal oxamide. J. Phys. Chem. B 116(32), 9796–9802 (2012)

    Article  Google Scholar 

  72. K. Wang, D. Duan, R. Wang, A. Lin, Q. Cui, B. Liu, T. Cui, B. Zou, X. Zhang, J. Hu, G. Zou, H.K. Mao, Stability of hydrogen-bonded supramolecular architecture under high pressure conditions: pressure-induced amorphization in melamine-boric acid adduct. Langmuir 25(8), 4787–4791 (2009)

    Article  Google Scholar 

  73. Y. Yoshimura, S.T. Stewart, H.K. Mao, R.J. Hemley, In situ Raman spectroscopy of low-temperature/high-pressure transformations of H2O. J. Chem. Phys. 126(17), 174505 (2007)

    Article  ADS  Google Scholar 

  74. C.-S. Zha, Z. Liu, R. Hemley, Synchrotron infrared measurements of dense hydrogen to 360 GPa. Phys. Rev. Lett. 108(14), 146402 (2012)

    Article  ADS  Google Scholar 

  75. H. Liu, H. Wang, Y. Ma, Quasi-molecular and atomic phases of dense solid hydrogen. J. Phys. Chem. C 116(16), 9221–9226 (2012)

    Article  Google Scholar 

  76. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

  77. C.Q. Sun, Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2(10), 1930–1961 (2010)

    Article  ADS  Google Scholar 

  78. Q. Yuan, Y.-P. Zhao, Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. J. Fluid Mech. 716, 171–188 (2013)

    Article  ADS  Google Scholar 

  79. Q.Z. Yuan, Y.P. Zhao, Wetting on flexible hydrophilic pillar-arrays. Sci. Rep. 3, 1944 (2013)

    ADS  Google Scholar 

  80. X.Y. Zhu, Q.Z. Yuan, Y.P. Zhao, Capillary wave propagation during the delamination of graphene by the precursor films in electro-elasto-capillarity. Sci. Rep. 2, 927 (2012)

    Article  ADS  Google Scholar 

  81. Q.Z. Yuan, Y.P. Zhao, Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Phys. Rev. Lett. 104(24), 246101 (2010)

    Google Scholar 

  82. Z. Wang, F.C. Wang, Y.P. Zhao, Tap dance of a water droplet. Proc. R. Soc. A: Math. Phys. Eng. Sci. 468(2145), 2485–2495 (2012)

    Article  ADS  Google Scholar 

  83. Y.P. Zhao, Droplet tap dance. http://www.newscientist.com/blogs/nstv/2012/04/zapped-droplets-tap-dance-to-the-beat.html

  84. Leidenfrost effect. http://www.dailymail.co.uk/sciencetech/article-2442638/Leidenfrost-Effect-makes-high-temperature-water-travel-uphill.html

  85. http://tinyurl.com/ed5gj

  86. X. Zhang, C.Q. Sun, Coulomb mediation of hydrogen-bond short-range interactions by programmable heating and salting. http://arxiv.org/abs/1310.0893 (2013)

  87. C.S. Zha, R.J. Hemley, S.A. Gramsch, H.K. Mao, W.A. Bassett, Optical study of H2O ice to 120 GPa: dielectric function, molecular polarizability, and equation of state. J. Chem. Phys. 126(7), 074506 (2007)

    Article  ADS  Google Scholar 

  88. W.B. Floriano, M.A.C. Nascimento, Dielectric constant and density of water as a function of pressure at constant temperature. Braz. J. Phys. 34(1), 38–41 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Prospects. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_42

Download citation

Publish with us

Policies and ethics