Skip to main content

Mpemba Paradox: H-Bond Memory and Skin Supersolidity

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

Abstract

Heating stores energy into water by stretching the O:H non-bond and shortening the H–O bond via a Coulomb coupling. Heating and supersolid skin elevate jointly gradients of mass density, specific heat, and thermal conductivity in the liquid, favoring heat flowing outwardly in liquid. Cooling does oppositely, like releasing a highly deformed bungee, to emit heat at a rate depending on initial storage. Convection alone raises the skin temperature without the presence of Mpemba effect. Being sensitive to the liquid volume and the temperature of the drain, Mpemba effect proceeds only in the strictly non-adiabatic source–drain interface ambient with a characteristic relaxation time that drops exponentially with the rise of the initial temperature of the source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.B. Mpemba, D.G. Osborne, Cool? Phys. Educ. 14, 410–413 (1979)

    Article  ADS  Google Scholar 

  2. http://en.wikipedia.org/wiki/Mpemba_effect#cite_note-2

  3. Aristotle, Meteorology 350 B.C.E: http://classics.mit.edu/Aristotle/meteorology.1.i.html

  4. D. Auerbach, Supercooling and the Mpemba effect: when hot-water freezes quicker than cold. Am. J. Phys. 63(10), 882–885 (1995)

    Article  ADS  Google Scholar 

  5. M. Jeng, The Mpemba effect: when can hot water freeze faster than cold? Am. J. Phys. 74(6), 514 (2006)

    Article  MathSciNet  Google Scholar 

  6. C.A. Knight, The Mpemba effect: the freezing times of hot and cold water. Am. J. Phys. 64(5), 524 (1996)

    Article  ADS  Google Scholar 

  7. M. Vynnycky, S.L. Mitchell, Evaporative cooling and the Mpemba effect. Heat Mass Transf. 46(8–9), 881–890 (2010)

    Article  ADS  Google Scholar 

  8. J.D. Brownridge, When does hot water freeze faster then cold water? A search for the Mpemba effect. Am. J. Phys. 79(1), 78 (2011)

    Article  ADS  Google Scholar 

  9. J.I. Katz, When hot water freezes before cold. Am. J. Phys. 77(1), 27–29 (2009)

    Article  ADS  Google Scholar 

  10. H. Heffner, The Mpemba effect: http://www.mtaonline.net/~hheffner/Mpemba.pdf (2001)

  11. M. Vynnycky, N. Maeno, Axisymmetric natural convection-driven evaporation of hot water and the Mpemba effect. Int. J. Heat Mass Transf. 55(23–24), 7297–7311 (2012)

    Article  Google Scholar 

  12. P. Ball, Does hot water freeze first. Phys. World 19(4), 19–21 (2006)

    Google Scholar 

  13. N. Bregović, Mpemba effect from a viewpoint of an experimental physical chemist. http://www.rsc.org/images/nikola-bregovic-entry_tcm18-225169.pdf (2012)

  14. L.B. Kier, C.K. Cheng, Effect of initial temperature on water aggregation at a cold surface. Chem. Biodivers. 10(1), 138–143 (2013)

    Article  Google Scholar 

  15. X. Zhang, Y. Huang, Z. Ma, C.Q. Sun, O:H-O bond anomalous relaxation resolving Mpemba paradox. http://arxiv.org/abs/1310.6514

  16. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  Google Scholar 

  17. C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)

    Article  Google Scholar 

  18. P.C. Cross, J. Burnham, P.A. Leighton, The Raman spectrum and the structure of water. J. Am. Chem. Soc. 59, 1134–1147 (1937)

    Article  Google Scholar 

  19. T. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi, L.G.M. Pettersson, A. Nilsson, S. Shin, High resolution X-ray emission spectroscopy of liquid water: the observation of two structural motifs. Chem. Phys. Lett. 460(4–6), 387–400 (2008)

    Article  ADS  Google Scholar 

  20. T.F. Kahan, J.P. Reid, D.J. Donaldson, Spectroscopic probes of the quasi-liquid layer on ice. J. Phys. Chem. A 111(43), 11006–11012 (2007)

    Article  Google Scholar 

  21. B. Winter, E.F. Aziz, U. Hergenhahn, M. Faubel, I.V. Hertel, Hydrogen bonds in liquid water studied by photoelectron spectroscopy. J. Chem. Phys. 126(12), 124504 (2007)

    Article  ADS  Google Scholar 

  22. M. Abu-Samha, K.J. Borve, M. Winkler, J. Harnes, L.J. Saethre, A. Lindblad, H. Bergersen, G. Ohrwall, O. Bjorneholm, S. Svensson, The local structure of small water clusters: imprints on the core-level photoelectron spectrum. J. Phys. B-At. Mol. Opt. Phys. 42(5), 055201 (2009)

    Article  ADS  Google Scholar 

  23. K. Nishizawa, N. Kurahashi, K. Sekiguchi, T. Mizuno, Y. Ogi, T. Horio, M. Oura, N. Kosugi, T. Suzuki, High-resolution soft X-ray photoelectron spectroscopy of liquid water. Phys. Chem. Chem. Phys. 13, 413–417 (2011)

    Article  Google Scholar 

  24. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structure order, and mass density of molecules packing in water and ice. Sci. Rep. 3, 3005 (2013)

    ADS  Google Scholar 

  25. U. Bergmann, A. Di Cicco, P. Wernet, E. Principi, P. Glatzel, A. Nilsson, Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure. J. Chem. Phys. 127(17), 174504 (2007)

    Article  ADS  Google Scholar 

  26. K.R. Wilson, R.D. Schaller, D.T. Co, R.J. Saykally, B.S. Rude, T. Catalano, J.D. Bozek, Surface relaxation in liquid water and methanol studied by x-ray absorption spectroscopy. Chin. J. Chem. Phys. 117(16), 7738–7744 (2002)

    Article  ADS  Google Scholar 

  27. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.Y. Mou, S.H. Chen, The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc. Natl. Acad. Sci. U.S.A. 104(47), 18387–18391 (2007)

    Article  ADS  Google Scholar 

  28. Q. Sun, The Raman OH stretching bands of liquid water. Vib. Spectrosc. 51(2), 213–217 (2009)

    Article  Google Scholar 

  29. J. Ceponkus, P. Uvdal, B. Nelander, Water tetramer, pentamer, and hexamer in inert matrices. J. Phys. Chem. A 116(20), 4842–4850 (2012)

    Article  Google Scholar 

  30. S. Hirabayashi, K.M.T. Yamada, Infrared spectra and structure of water clusters trapped in argon and krypton matrices. J. Mol. Struct. 795(1–3), 78–83 (2006)

    Article  ADS  Google Scholar 

  31. C.Q. Sun, Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108 (Springer, Berlin, 2014). ISBN: 978-981-4585-20-0. 550

    Google Scholar 

  32. X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, L.W. Yang, W.T. Zheng, C.Q. Sun, Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C–C bond in graphene. Nanoscale 4(2), 502–510 (2012)

    Article  ADS  Google Scholar 

  33. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)

    Article  Google Scholar 

  34. J.K. Gregory, D.C. Clary, K. Liu, M.G. Brown, R.J. Saykally, The water dipole moment in water clusters. Science 275(5301), 814–817 (1997)

    Article  Google Scholar 

  35. K.R. Siefermann, Y. Liu, E. Lugovoy, O. Link, M. Faubel, U. Buck, B. Winter, B. Abel, Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2, 274–279 (2010)

    Article  Google Scholar 

  36. D.D. Kang, J.Y. Dai, J.M. Yuan, Changes of structure and dipole moment of water with temperature and pressure: a first principles study. J. Chem. Phys. 135(2), 024505 (2011)

    Article  ADS  Google Scholar 

  37. C. Wang, H. Lu, Z. Wang, P. Xiu, B. Zhou, G. Zuo, R. Wan, J. Hu, H. Fang, Stable liquid water Droplet on a water monolayer formed at room temperature on ionic model substrates. Phys. Rev. Lett. 103(13), 137801–137804 (2009)

    Article  ADS  Google Scholar 

  38. M. James, T.A. Darwish, S. Ciampi, S.O. Sylvester, Z.M. Zhang, A. Ng, J.J. Gooding, T.L. Hanley, Nanoscale condensation of water on self-assembled monolayers. Soft Matter 7(11), 5309–5318 (2011)

    Article  ADS  Google Scholar 

  39. Y. Ni, S.M. Gruenbaum, J.L. Skinner, Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 110(6), 1992–1998 (2013)

    Article  ADS  Google Scholar 

  40. H. Qiu, W. Guo, Electromelting of confined monolayer ice. Phys. Rev. Lett. 110(19), 195701 (2013)

    Article  ADS  Google Scholar 

  41. J. Fourier, The Analytical Theory of Heat (Dover Publications, New York, 1955)

    Google Scholar 

  42. Water Thermal Properties—The Engineering Toolbox [Online]. Available: http://www.engineeringtoolbox.com/water-thermal-properties-d_162.html

  43. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)

    Article  Google Scholar 

  44. A. Uysal, M. Chu, B. Stripe, A. Timalsina, S. Chattopadhyay, C.M. Schlepütz, T.J. Marks, P. Dutta, What x rays can tell us about the interfacial profile of water near hydrophobic surfaces. Phys. Revi. B 88(3), 035431 (2013)

    Article  ADS  Google Scholar 

  45. F.G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, B. Coasne, Freezing of water confined at the nanoscale. Phys. Rev. Lett. 109(3), 035701 (2012)

    Article  ADS  Google Scholar 

  46. M. Freeman, Cooler still. Phys. Educ. 14, 417–421 (1979)

    Article  ADS  Google Scholar 

  47. B. Wojciechowski, Freezing of aqueous solutions containing gases. Cryst. Res. Technol. 23, 843–848 (1988)

    Article  Google Scholar 

  48. Q. Sun, Raman spectroscopic study of the effects of dissolved NaCl on water structure. Vib. Spectrosc. 62, 110–114 (2012)

    Article  Google Scholar 

  49. S. Park, M.D. Fayer, Hydrogen bond dynamics in aqueous NaBr solutions. Proc. Natl. Acad. Sci. U.S.A. 104(43), 16731–16738 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Mpemba Paradox: H-Bond Memory and Skin Supersolidity. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_41

Download citation

Publish with us

Policies and ethics