Skip to main content

STS and PES: Valence DOS

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

  • 2137 Accesses

Abstract

O and N adsorbates create commonly four DOS features in the valence band, corresponding to the host antibonding dipoles (>Ef), adsorbate non-bonding lone pairs (<Ef), electron holes of host (Ef), and the adsorbate–host bonding states. Electron holes and lone pair states may overlap and cancel each other. Dipole formation lowers the work function of the surfaces. Overdosing of adsorbates restores the work function as the dipoles serve as donor for further bond formation, which provide mechanism for surface antioxidation. Electronegativity, lattice size, dosage, and temperature are factors controlling bond and band formation and relaxation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Kuk, P.J. Silverman, Scanning tunneling microscope instrumentation. Rev. Sci. Instrum. 60(2), 165–180 (1989)

    Article  ADS  Google Scholar 

  2. J.B. Pendry, A.B. Pretre, B.C.H. Krutzen, Theory of the scanning tunneling microscope. J. Phys.: Condens. Matter 3(24), 4313–4321 (1991)

    ADS  Google Scholar 

  3. J. Wintterlin, R.J. Behm, in The Scanning Tunnelling Microscopy I, ed. by H.J. GĂĽnthert, R. Wiesendanger (Springer, Berlin, 1992)

    Google Scholar 

  4. F.M. Chua, Y. Kuk, P.J. Silverman, Oxygen-chemisorption on cu(110): an atomic view by scanning tunneling microscopy. Phys. Rev. Lett. 63(4), 386–389 (1989)

    Article  ADS  Google Scholar 

  5. C. Surgers, M. Schock, H. von Lohneysen, Oxygen-induced surface structure of Nb(110). Surf. Sci. 471(1–3), 209–218 (2001)

    Article  ADS  Google Scholar 

  6. W. Jacob, V. Dose, A. Goldmann, Atomic adsorption of oxygen on Cu(111) and Cu(110). Appl. Phys. A-Mater. Sci. Process. 41(2), 145–150 (1986)

    Article  ADS  Google Scholar 

  7. W. Sesselmann, H. Conrad, G. Ertl, J. Kuppers, B. Woratschek, Probing the local density of states of metal-surfaces by deexcitation of metastable noble-gas atoms. Phys. Rev. Lett. 50(6), 446–450 (1983)

    Article  ADS  Google Scholar 

  8. R.A. Didio, D.M. Zehner, E.W. Plummer, An angle-resolved ups study of the oxygen-induced reconstruction of Cu(110). J. Vac. Sci. Technol. Vac. Surf. Films 2(2), 852–855 (1984)

    Article  ADS  Google Scholar 

  9. V.P. Belash, I.N. Klimova, V.I. Kormilets, V.Y. Trubitsin, L.D. Finkelstein, Transformation of the electronic structure of Cu into Cu2O in the adsorption of oxygen. Surf. Rev. Lett. 6(3–4), 383–388 (1999)

    Article  Google Scholar 

  10. R. Courths, B. Cord, H. Wern, H. Saalfeld, S. Hufner, Dispersion of the oxygen-induced bands on Cu (110): an angle-resolved UPS study of the system p(2 × 1)O/Cu(110). Solid State Commun. 63(7), 619–623 (1987)

    Article  ADS  Google Scholar 

  11. C.Q. Sun, S. Li, Oxygen-derived DOS features in the valence band of metals. Surf. Rev. Lett. 7(3), 213–217 (2000)

    Article  ADS  Google Scholar 

  12. G. Binnig, K.H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, A.R. Williams, Tunneling spectroscopy and inverse photoemission: image and field states. Phys. Rev. Lett. 55(9), 991–994 (1985)

    Article  ADS  Google Scholar 

  13. T. Jung, Y.W. Mo, F.J. Himpsel, Identification of metals in scanning-tunneling-microscopy via image states. Phys. Rev. Lett. 74(9), 1641–1644 (1995)

    Article  ADS  Google Scholar 

  14. M. Portalupi, L. Duo, G. Isella, R. Bertacco, M. Marcon, F. Ciccacci, Electronic structure of epitaxial thin NiO(100) films grown on Ag(100): towards a firm experimental basis. Phys. Rev. B 64(16), 165402 (2001)

    Article  ADS  Google Scholar 

  15. R. Pantel, M. Bujor, J. Bardolle, Continuous measurement of surface-potential variations during oxygen-adsorption on (100), (110) and (111) faces of niobium using mirror electron-microscope. Surf. Sci. 62(2), 589–609 (1977)

    Article  ADS  Google Scholar 

  16. S. HĂĽfner, Photoelectron Spectroscopy: Principles and Applications (Springer, New York, 1995)

    Book  Google Scholar 

  17. D. Sekiba, D. Ogarane, S. Tawara, K. Yagi-Watanabe, Electronic structure of the Cu-O/Ag(110)(2 × 2)p2 mg surface. Phys. Rev. B 67(3), 035411 (2003)

    Article  ADS  Google Scholar 

  18. S. Warren, W.R. Flavell, A.G. Thomas, J. Hollingworth, P.L. Wincott, A.F. Prime, S. Downes, C.K. Chen, Photoemission studies of single crystal CuO(100). J. Phys. Condens. Matter 11(26), 5021–5043 (1999)

    Article  ADS  Google Scholar 

  19. E.G. Emberly, G. Kirczenow, Antiresonances in molecular wires. J. Phys. Condens. Matter 11(36), 6911–6926 (1999)

    Article  ADS  Google Scholar 

  20. K. Yagi, K. Higashiyama, H. Fukutani, Angle-resolved photoemission-study of oxygen-induced c(2 × 4) structure on Pd(110). Surf. Sci. 295(1–2), 230–240 (1993)

    Article  ADS  Google Scholar 

  21. C.W. Tucker, Oxygen faceting of rhodium (210) and (100) surfaces. Acta Metall. 15(9), 1465–1474 (1967)

    Article  Google Scholar 

  22. J.R. Mercer, P. Finetti, M.J. Scantlebury, U. Beierlein, V.R. Dhanak, R. McGrath, Angle-resolved photoemission study of half-monolayer O and S structures on the Rh(100) surface. Phys. Rev. B 55(15), 10014–10021 (1997)

    Article  ADS  Google Scholar 

  23. M. Zacchigna, C. Astaldi, K.C. Prince, M. Sastry, C. Comicioli, R. Rosei, C. Quaresima, C. Ottaviani, C. Crotti, A. Antonini, M. Matteucci, P. Perfetti, Photoemission from atomic and molecular adsorbates on Rh(100). Surf. Sci. 347(1–2), 53–62 (1996)

    Article  ADS  Google Scholar 

  24. E. Schwarz, J. Lenz, H. Wohlgemuth, K. Christmann, The interaction of oxygen with a rhodium (110) surface. Vacuum 41(1–3), 167–170 (1990)

    Article  Google Scholar 

  25. C.Q. Sun, Exposure-resolved VLEED from the O–Cu(001): bonding dynamics. Vacuum 48(6), 535–541 (1997)

    Article  Google Scholar 

  26. V. Dose, Momentum-resolved inverse photoemission. Surf. Sci. Rep. 5, 337–378 (1986)

    Article  ADS  Google Scholar 

  27. C.T. Chen, N.V. Smith, Unoccupied surface-states on clean and oxygen-covered Cu(110) and Cu(111). Phys. Rev. B 40(11), 7487–7490 (1989)

    Article  ADS  Google Scholar 

  28. T. Pillo, R. Zimmermann, P. Steiner, S. Hufner, The electronic structure of PdO found by photoemission (UPS and XPS) and inverse photoemission (BIS). J. Phys. Condens. Matter 9(19), 3987–3999 (1997)

    Article  ADS  Google Scholar 

  29. K. Yagi, H. Fukutani, Oxygen adsorption site of Pd(110)c(2 × 4)–O: analysis of ARUPS compared with STM image. Surf. Sci. 412–13, 489–494 (1998)

    Article  Google Scholar 

  30. R. Ozawa, A. Yamane, K. Morikawa, M. Ohwada, K. Suzuki, H. Fukutani, Angle-resolved UPS study of the oxygen-induced 2 × 1 surface of Cu(110). Surf. Sci. 346(1–3), 237–242 (1996)

    Article  ADS  Google Scholar 

  31. Y.S. Wang, X.M. Wei, Z.J. Tian, Y.M. Cao, R.S. Zhai, T. Ushikubo, K. Sato, S.X. Zhuang, An AES, UPS and HREELS study of the oxidation and reaction of NB(110). Surf. Sci. 372(1–3), L285–L290 (1997)

    Article  ADS  Google Scholar 

  32. A.I. Boronin, S.V. Koscheev, G.M. Zhidomirov, XPS and UPS study of oxygen states on silver. J. Electron Spectrosc. Relat. Phenom. 96(1–3), 43–51 (1998)

    Article  Google Scholar 

  33. A.M. Aprelev, V.A. Grazhulis, A.M. Ionov, A.A. Lisachenko, UPS (8.43-ev and 21.2-ev) data on the evolution of DOS spectra near E(f) of Bi2Sr2CaCu2O8 under thermal and light treatments. Physica C 235, 1015–1016 (1994)

    Article  ADS  Google Scholar 

  34. A. Howard, D.N.S. Clark, C.E.J. Mitchell, R.G. Egdell, V.R. Dhanak, Initial and final state effects in photoemission from Au nanoclusters on TiO2(110). Surf. Sci. 518(3), 210–224 (2002)

    Article  ADS  Google Scholar 

  35. V.A. Bondzie, P. Kleban, D.J. Dwyer, XPS identification of the chemical state of subsurface oxygen in the O/Pd(110) system. Surf. Sci. 347(3), 319–328 (1996)

    Article  ADS  Google Scholar 

  36. H. Tillborg, A. Nilsson, B. Hernnas, N. Martensson, O/Cu(100) studied by core level spectroscopy. Surf. Sci. 270, 300–304 (1992)

    Article  ADS  Google Scholar 

  37. M.V. Ganduglia-Pirovano, M. Scheffler, Structural and electronic properties of chemisorbed oxygen on Rh(111). Phys. Rev. B 59(23), 15533–15543 (1999)

    Article  ADS  Google Scholar 

  38. S. Lizzit, A. Baraldi, A. Groso, K. Reuter, M.V. Ganduglia-Pirovano, C. Stampl, M. Scheffler, M. Stichler, C. Keller, W. Wurth, D. Menzel, Surface core-level shifts of clean and oxygen-covered Ru(0001). Phys. Rev. B 63(20), 205419 (2001)

    Article  ADS  Google Scholar 

  39. S. Schwegmann, A.P. Seitsonen, H. Dietrich, H. Bludau, H. Over, K. Jacobi, G. Ertl, The adsorption of atomic nitrogen on Ru(0001): geometry and energetics. Chem. Phys. Lett. 264(6), 680–686 (1997)

    Article  ADS  Google Scholar 

  40. S. Schwegmann, A.P. Seitsonen, V. De Renzi, H. Dietrich, H. Bludau, M. Gierer, H. Over, K. Jacobi, M. Scheffler, G. Ertl, Oxygen adsorption on the Ru(10(1)over-bar0) surface: anomalous coverage dependence. Phys. Rev. B 57(24), 15487–15495 (1998)

    Article  ADS  Google Scholar 

  41. C.Q. Sun, A model of bonding and band-forming for oxides and nitrides. Appl. Phys. Lett. 72(14), 1706–1708 (1998)

    Article  ADS  Google Scholar 

  42. C.Q. Sun, A model of bond-and-band for the behavior of nitrides. Mod. Phys. Lett. B 11(23), 1021–1029 (1997)

    Article  ADS  Google Scholar 

  43. Y.Q. Fu, C.Q. Sun, H.J. Du, B.B. Yan, Crystalline carbonitride forms harder than the hexagonal Si-carbonitride crystallite. J. Phys. D-Appl. Phys. 34(9), 1430–1435 (2001)

    Article  ADS  Google Scholar 

  44. C.Q. Sun, B.K. Tay, S.P. Lau, X.W. Sun, X.T. Zeng, S. Li, H.L. Bai, H. Liu, Z.H. Liu, E.Y. Jiang, Bond contraction and lone pair interaction at nitride surfaces. J. Appl. Phys. 90(5), 2615–2617 (2001)

    Article  ADS  Google Scholar 

  45. M. Terrones, P.M. Ajayan, F. Banhart, X. Blase, D.L. Carroll, J.C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Ruhle, T. Seeger, H. Terrones, N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl. Phys. Mater. Sci. Process. 74(3), 355–361 (2002)

    Article  ADS  Google Scholar 

  46. F. Pforte, A. Gerlach, A. Goldmann, R. Matzdorf, J. Braun, A. Postnikov, Wave-vector-dependent symmetry analysis of a photoemission matrix element: the quasi-one-dimensional model system Cu(110)(2 × 1)O. Phys. Rev. B 63(16), 165405 (2001)

    Article  ADS  Google Scholar 

  47. C. Benndorf, B. Egert, G. Keller, H. Seidel, F. Thieme, Oxygen interaction with Cu(100) studied by AES, ELS, LEED and work function changes. J. Phys. Chem. Solids 40(12), 877–886 (1979)

    Article  ADS  Google Scholar 

  48. C. Benndorf, B. Egert, G. Keller, F. Thieme, Initial oxidation of Cu(100) single-crystal surfaces: electron spectroscopic investigation. Surf. Sci. 74(1), 216–228 (1978)

    Article  ADS  Google Scholar 

  49. M. DrissKhodja, A. Gheorghiu, G. Dufour, H. Roulet, C. Senemaud, M. Cauchetier, Electronic structure of nanometric Si/C, Si/N, and Si/C/N powders studied by both x-ray-photoelectron and soft-x-ray spectroscopies. Phys. Rev. B 53(8), 4287–4293 (1996)

    Article  ADS  Google Scholar 

  50. T. Hughbanks, Y.C. Tian, On the structure and composition of carbon nitride. Solid State Commun. 96(5), 321–325 (1995)

    Article  ADS  Google Scholar 

  51. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

  52. N. Hellgren, J.H. Guo, Y. Luo, C. Sathe, A. Agui, S. Kashtanov, J. Nordgren, H. Agren, J.E. Sundgren, Electronic structure of carbon nitride thin films studied by X-ray spectroscopy techniques. Thin Solid Films 471(1–2), 19–34 (2005)

    Article  ADS  Google Scholar 

  53. J. Wintterlin, R. Schuster, D.J. Coulman, G. Ertl, R.J. Behm, Atomic motion and mass-transport in the oxygen induced reconstructions of Cu(110). J. Vac. Sci. Technol. B 9(2), 902–908 (1991)

    Article  Google Scholar 

  54. G.G. Fuentes, E. Elizalde, J.M. Sanz, Optical and electronic properties of TiCxNy films. J. Appl. Phys. 90(6), 2737–2743 (2001)

    Article  ADS  Google Scholar 

  55. C.Q. Sun, S. Li, B.K. Tay, X.W. Sun, S.P. Lau, Solution certainty in the Cu(110)-(2 × 1)-2O(2-) surface crystallography. Int. J. Mod. Phys. B 16(1–2), 71–78 (2002)

    Article  ADS  Google Scholar 

  56. H. Tillborg, A. Nilsson, T. Wiell, N. Wassdahl, N. Martensson, J. Nordgren, Electronic-structure of atomic oxygen adsorbed on Ni(100) and Cu(100) studied by soft-x-ray emission and photoelectron spectroscopies. Phys. Rev. B 47(24), 16464–16470 (1993)

    Article  ADS  Google Scholar 

  57. A. Spitzer, H. Luth, The adsorption of oxygen on copper surfaces.1. Cu(100) and Cu(110). Surf. Sci. 118(1–2), 121–135 (1982)

    Article  ADS  Google Scholar 

  58. A. Spitzer, H. Luth, The adsorption of oxygen on copper surfaces. 2. Cu(111). Surf. Sci. 118(1–2), 136–144 (1982)

    Article  ADS  Google Scholar 

  59. D. Alfe, S. de Gironcoli, S. Baroni, The reconstruction of Rh(001) upon oxygen adsorption. Surf. Sci. 410(2–3), 151–157 (1998)

    Article  ADS  Google Scholar 

  60. A.C. Perrella, W.H. Rippard, P.G. Mather, M.J. Plisch, R.A. Buhrman, Scanning tunneling spectroscopy and ballistic electron emission microscopy studies of aluminum-oxide surfaces. Phys. Rev. B 65(20), 201403 (2002)

    Article  ADS  Google Scholar 

  61. J.D. Zhang, P.A. Dowben, D.Q. Li, M. Onellion, Angle-resolved photoemission-study of oxygen-chemisorption on Gd(0001). Surf. Sci. 329(3), 177–183 (1995)

    Article  ADS  Google Scholar 

  62. A. Bottcher, H. Niehus, Oxygen adsorbed on oxidized Ru(0001). Phys. Rev. B 60(20), 14396–14404 (1999)

    Article  ADS  Google Scholar 

  63. A. Bottcher, H. Conrad, H. Niehus, Reactivity of oxygen phases created by the high temperature oxidation of Ru(0001). Surf. Sci. 452(1–3), 125–132 (2000)

    Article  ADS  Google Scholar 

  64. G. Bester, M. Fahnle, On the electronic structure of the pure and oxygen covered Ru(0001) surface. Surf. Sci. 497(1–3), 305–310 (2002)

    Article  ADS  Google Scholar 

  65. C. Stampfl, M.V. Ganduglia-Pirovano, K. Reuter, M. Scheffler, Catalysis and corrosion: the theoretical surface-science context. Surf. Sci. 500(1–3), 368–394 (2002)

    Article  ADS  Google Scholar 

  66. S. Altieri, L.H. Tjeng, G.A. Sawatzky, Electronic structure and chemical reactivity of oxide-metal interfaces: MgO(100)/Ag(100). Phys. Rev. B 61(24), 16948–16955 (2000)

    Article  ADS  Google Scholar 

  67. R. Mamy, Spectroscopic study of the surface oxidation of a thin epitaxial Co layer. Appl. Surf. Sci. 158(3–4), 353–356 (2000)

    Article  ADS  Google Scholar 

  68. J.C. Zheng, X.N. Xie, A.T.S. Wee, K.P. Loh, Oxygen-induced surface state on diamond (100). Diam. Relat. Mat. 10(3–7), 500–505 (2001)

    Article  Google Scholar 

  69. L.W. Lin, The role of oxygen and fluorine in the electron-emission of some kinds of cathodes. J. Vac. Sci. Technol. Vac. Surf. Films 6(3), 1053–1057 (1988)

    Article  ADS  Google Scholar 

  70. G.G. Tibbetts, J.M. Burkstrand, J.C. Tracy, Electronic properties of adsorbed layers of nitrogen, oxygen, and sulfur on copper (100). Phys. Rev. B 15(8), 3652–3660 (1977)

    Article  ADS  Google Scholar 

  71. G.G. Tibbetts, J.M. Burkstrand, Electronic properties of adsorbed layers of nitrogen, oxygen, and sulfur on silver (111). Phys. Rev. B 16(4), 1536–1541 (1977)

    Article  ADS  Google Scholar 

  72. S. Souto, M. Pickholz, M.C. dos Santos, F. Alvarez, Electronic structure of nitrogen-carbon alloys (a-CNx) determined by photoelectron spectroscopy. Phys. Rev. B 57(4), 2536–2540 (1998)

    Article  ADS  Google Scholar 

  73. Z.Y. Chen, J.P. Zhao, T. Yano, T. Ooie, Valence band electronic structure of carbon nitride from x-ray photoelectron spectroscopy. J. Appl. Phys. 92(1), 281–287 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). STS and PES: Valence DOS. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_4

Download citation

Publish with us

Policies and ethics