Skip to main content

Skin Supersolidity of Water and Ice

  • Chapter
  • First Online:
  • 2193 Accesses

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

Abstract

The skins of water ice share the same nature of supersolidity with attributes of elastic, hydrophobic, polarized, highly thermal stable, slippery and high tension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Day, J. Beamish, Low-temperature shear modulus changes in solid He-4 and connection to supersolidity. Nature 450(7171), 853–856 (2007)

    Article  ADS  Google Scholar 

  2. C. Wang, H. Lu, Z. Wang, P. Xiu, B. Zhou, G. Zuo, R. Wan, J. Hu, H. Fang, Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys. Rev. Lett. 103(13), 137801–137804 (2009)

    Article  ADS  Google Scholar 

  3. T.F. Kahan, J.P. Reid, D.J. Donaldson, Spectroscopic probes of the quasi-liquid layer on ice. J. Phys. Chem. A 111(43), 11006–11012 (2007)

    Article  Google Scholar 

  4. M. James, T.A. Darwish, S. Ciampi, S.O. Sylvester, Z.M. Zhang, A. Ng, J.J. Gooding, T.L. Hanley, Nanoscale condensation of water on self-assembled monolayers. Soft Matter 7(11), 5309–5318 (2011)

    Article  ADS  Google Scholar 

  5. T. Ishiyama, H. Takahashi, A. Morita, Origin of vibrational spectroscopic response at ice surface. J. Phys. Chem. Lett. 3, 3001–3006 (2012)

    Article  Google Scholar 

  6. K.R. Siefermann, Y. Liu, E. Lugovoy, O. Link, M. Faubel, U. Buck, B. Winter, B. Abel, Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2, 274–279 (2010)

    Article  Google Scholar 

  7. C. Zhang, F. Gygi, G. Galli, Strongly anisotropic dielectric relaxation of water at the nanoscale. J. Phys. Chem. Lett. 4, 2477–2481 (2013)

    Article  Google Scholar 

  8. H. Qiu, W. Guo, Electromelting of confined monolayer ice. Phys. Rev. Lett. 110(19), 195701 (2013)

    Article  ADS  Google Scholar 

  9. B. Winter, E.F. Aziz, U. Hergenhahn, M. Faubel, I.V. Hertel, Hydrogen bonds in liquid water studied by photoelectron spectroscopy. J. Chem. Phys. 126(12), 124504 (2007)

    Article  ADS  Google Scholar 

  10. M. Abu-Samha, K.J. Borve, M. Winkler, J. Harnes, L.J. Saethre, A. Lindblad, H. Bergersen, G. Ohrwall, O. Bjorneholm, S. Svensson, The local structure of small water clusters: imprints on the core-level photoelectron spectrum. J. Phys B-At. Mol. Opt. Phys. 42(5), 055201 (2009)

    Article  ADS  Google Scholar 

  11. K. Nishizawa, N. Kurahashi, K. Sekiguchi, T. Mizuno, Y. Ogi, T. Horio, M. Oura, N. Kosugi, T. Suzuki, High-resolution soft X-ray photoelectron spectroscopy of liquid water. Phys. Chem. Chem. Phys. 13, 413–417 (2011)

    Article  Google Scholar 

  12. R. Vacha, O. Marsalek, A.P. Willard, D.J. Bonthuis, R.R. Netz, P. Jungwirth, Charge transfer between water molecules as the possible origin of the observed charging at the surface of pure water. J. Phys. Chem. Lett. 3(1), 107–111 (2012)

    Article  Google Scholar 

  13. K.R. Wilson, R.D. Schaller, D.T. Co, R.J. Saykally, B.S. Rude, T. Catalano, J.D. Bozek, Surface relaxation in liquid water and methanol studied by x-ray absorption spectroscopy. J. Chem. Phys. 117(16), 7738–7744 (2002)

    Article  ADS  Google Scholar 

  14. U. Bergmann, A. Di Cicco, P. Wernet, E. Principi, P. Glatzel, A. Nilsson, Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure. J. Chem. Phys. 127(17), 174504 (2007)

    Article  ADS  Google Scholar 

  15. E.G. Solveyra, E. de la Llave, V. Molinero, G. Soler-Illia, D.A. Scherlis, Structure, dynamics, and phase behavior of water in TiO2 nanopores. J. Chem. Phys. C. 117(7), 3330–3342 (2013)

    Article  Google Scholar 

  16. A. Uysal, M. Chu, B. Stripe, A. Timalsina, S. Chattopadhyay, C.M. Schlepütz, T.J. Marks, P. Dutta, What x rays can tell us about the interfacial profile of water near hydrophobic surfaces. Phys. Rev. B. 88(3), 035431 (2013)

    Article  ADS  Google Scholar 

  17. M. Kasuya, M. Hino, H. Yamada, M. Mizukami, H. Mori, S. Kajita, T. Ohmori, A. Suzuki, K. Kurihara, Characterization of water confined between silica surfaces using the resonance shear measurement. J. Phys. Chem. C. 117(26), 13540–13546 (2013)

    Article  Google Scholar 

  18. I.V. Stiopkin, C. Weeraman, P.A. Pieniazek, F.Y. Shalhout, J.L. Skinner, A.V. Benderskii, Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474(7350), 192–195 (2011)

    Article  ADS  Google Scholar 

  19. Y. Ni, S.M. Gruenbaum, J.L. Skinner, Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy. Proc. Nat. Academy. Sci. USA. 110(6), 1992–1998 (2013)

    Article  ADS  Google Scholar 

  20. Y.B. Fan, X. Chen, L.J. Yang, P.S. Cremer, Y.Q. Gao, On the structure of water at the aqueous/air interface. J. Phys. Chem. B. 113(34), 11672–11679 (2009)

    Article  Google Scholar 

  21. C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)

    Article  Google Scholar 

  22. Y.I. Tarasevich, State and structure of water in vicinity of hydrophobic surfaces. Colloid. J. 73(2), 257–266 (2011)

    Article  Google Scholar 

  23. B.H. Chai, H. Yoo, G.H. Pollack, Effect of radiant energy on near-surface water. J. Phys. Chem. B. 113(42), 13953–13958 (2009)

    Article  Google Scholar 

  24. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)

    Article  Google Scholar 

  25. J.K. Gregory, D.C. Clary, K. Liu, M.G. Brown, R.J. Saykally, The water dipole moment in water clusters. Science 275(5301), 814–817 (1997)

    Article  Google Scholar 

  26. F. Yang, X. Wang, M. Yang, A. Krishtal, C. van Alsenoy, P. Delarue, P. Senet, Effect of hydrogen bonds on polarizability of a water molecule in (H2O)(N) (N = 6, 10, 20) isomers. Phys. Chem. Chem. Phys. 12(32), 9239–9248 (2010)

    Article  Google Scholar 

  27. C.Q. Sun, Y. Nie, J. Pan, X. Zhang, S.Z. Ma, Y. Wang, W. Zheng, Zone-selective photoelectronic measurements of the local bonding and electronic dynamics associated with the monolayer skin and point defects of graphite. RSC Adv. 2(6), 2377–2383 (2012)

    Article  Google Scholar 

  28. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  Google Scholar 

  29. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structure order, and mass density of molecules packing in water and ice. Sci. Rep. 3, 3005 (2013)

    ADS  Google Scholar 

  30. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B. 117(43), 13639–13645 (2013)

    Article  Google Scholar 

  31. Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)

    Article  Google Scholar 

  32. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C.Y. Mou, S.H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc. Nat. Academy. Sci. USA. 104(2), 424–428 (2007)

    Article  ADS  Google Scholar 

  33. M.W. Zhao, R.Q. Zhang, Y.Y. Xia, C. Song, S.T. Lee, Faceted silicon nanotubes: structure, energetic, and passivation effects. J. Chem. Phys. C. 111(3), 1234–1238 (2007)

    Article  Google Scholar 

  34. L. Vrbka, P. Jungwirth, Homogeneous freezing of water starts in the subsurface. J. Phys. Chem. B. 110(37), 18126–18129 (2006)

    Article  Google Scholar 

  35. D. Donadio, P. Raiteri, M. Parrinello, Topological defects and bulk melting of hexagonal ice. J. Phys. Chem. B. 109(12), 5421–5424 (2005)

    Article  Google Scholar 

  36. J.M. Zheng, W.C. Chin, E. Khijniak, G.H. Pollack, Surfaces and interfacial water: Evidence that hydrophilic surfaces have long-range impact. Adv. Colloid Interface Sci. 127(1), 19–27 (2006)

    Article  Google Scholar 

  37. C.Q. Sun, Y. Wang, B.K. Tay, S. Li, H. Huang, Y.B. Zhang, Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom. J. Phys. Chem. B. 106(41), 10701–10705 (2002)

    Article  Google Scholar 

  38. Z. Zhang, M. Zhao, Q. Jiang, Melting temperatures of semiconductor nanocrystals in the mesoscopic size range. Semicond. Sci. Technol. 16(6), L33–L35 (2001)

    Article  ADS  Google Scholar 

  39. D. Xu, K.M. Liechti, K. Ravi-Chandar, Mechanical probing of icelike water monolayers. Langmuir 25(22), 12870–12873 (2009)

    Article  Google Scholar 

  40. K.B. Jinesh, J.W.M. Frenken, Experimental evidence for ice formation at room temperature. Phys. Rev. Lett. 101(3), 036101 (2008)

    Article  ADS  Google Scholar 

  41. K.B. Jinesh, J.W.M. Frenken, Capillary condensation in atomic scale friction: how water acts like a glue. Phys. Rev. Lett. 96(16), 166103 (2006)

    Article  ADS  Google Scholar 

  42. A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Physics of ice friction. J. Appl. Phys. 107(8), 081101–081115 (2010)

    Article  ADS  Google Scholar 

  43. R. Rosenberg, Why ice is slippery? Phys. Today 12, 50–55 (2005)

    Article  Google Scholar 

  44. M. Faraday, Experimental researches in chemical and physics, London: Tayler and Francis 372 (1859)

    Google Scholar 

  45. C.Q. Sun, Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog. Mater. Sci. 54(2), 179–307 (2009)

    Article  Google Scholar 

  46. C.Q. Sun, B.K. Tay, S.P. Lau, X.W. Sun, X.T. Zeng, S. Li, H.L. Bai, H. Liu, Z.H. Liu, E.Y. Jiang, Bond contraction and lone pair interaction at nitride surfaces. J. Appl. Phys. 90(5), 2615–2617 (2001)

    Article  ADS  Google Scholar 

  47. C. Lu, Y.W. Mai, P.L. Tam, Y.G. Shen, Nanoindentation-induced elastic-plastic transition and size effect in alpha-Al2O3(0001). Philos. Mag. Lett. 87(6), 409–415 (2007)

    Article  ADS  Google Scholar 

  48. C. Antonini, I. Bernagozzi, S. Jung, D. Poulikakos, M. Marengo, Water drops dancing on ice: how sublimation leads to drop rebound. Phys. Rev. Lett. 111(1), 014501 (2013)

    Article  ADS  Google Scholar 

  49. D.P. Singh, J.P. Singh, Delayed freezing of water droplet on silver nanocolumnar thin film. Appl. Phys. Lett. 102(24), 243112 (2013)

    Article  ADS  Google Scholar 

  50. F.G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, B. Coasne, Freezing of water confined at the nanoscale. Phys. Rev. Lett. 109(3), 035701 (2012)

    Article  ADS  Google Scholar 

  51. E.B. Moore, E. de la Llave, K. Welke, D.A. Scherlis, V. Molinero, Freezing, melting and structure of ice in a hydrophilic nanopore. PCCP 12(16), 4124–4134 (2010)

    Article  ADS  Google Scholar 

  52. Q.Z. Yuan, Y.P. Zhao, Topology-dominated dynamic wetting of the precursor chain in a hydrophilic interior corner. Proc. R. Soc. A-Math. Phys. Eng. Sci. 468(2138), 310–322 (2012)

    Article  ADS  Google Scholar 

  53. S. Liu, J. Luo, G. Xie, D. Guo, Effect of surface charge on water film nanoconfined between hydrophilic solid surfaces. J. Appl. Phys. 105(12), 124301–124304 (2009)

    Article  ADS  Google Scholar 

  54. S.R. Friedman, M. Khalil, P. Taborek, Wetting transition in water. Phys. Rev. Lett. 111(22) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Skin Supersolidity of Water and Ice. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_39

Download citation

Publish with us

Policies and ethics