Skip to main content

Thermally Driven Density and Phonon-Stiffness Oscillation

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

  • 2114 Accesses

Abstract

The density and phonon-stiffness of water ice oscillates over the full temperature range, transiting at 277, 258, and 80 K. The segment of relatively lower specific heat contracts at cooling, which forces the other of the H-bond to elongate via Coulomb repulsion. In the liquid and solid phases, O:H bond contracts more than the H–O elongates; hence, an O:H–O cooling contraction and the seemingly ‘regular’ process of cooling densification take place. During freezing, the H–O contracts less than the O:H elongates, leading to an O:H–O elongation and volume expansion. At T < 80 K, the length and energy of both segments conserve but the O:H–O angle stretches, resulting in slight volume expansion. In ice, the O–O distance is longer than it is in water, resulting in a lower density, so that ice floats. Length contraction/elongation of the specific segment is associated with phonon-stiffening/softening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Soper, J. Teixeira, T. Head-Gordon, Is ambient water inhomogeneous on the nanometer-length scale? Proc. Natl. Acad. Sci. USA 107(12), E44–E44 (2010)

    Article  ADS  Google Scholar 

  2. G.N.I. Clark, C.D. Cappa, J.D. Smith, R.J. Saykally, T. Head-Gordon, The structure of ambient water. Mol. Phys. 108(11), 1415–1433 (2010)

    Article  ADS  Google Scholar 

  3. V. Molinero, E.B. Moore, Water modeled as an intermediate element between Carbon and Silicon. J. Phys. Chem. B 113(13), 4008–4016 (2009)

    Article  Google Scholar 

  4. V. Petkov, Y. Ren, M. Suchomel, Molecular arrangement in water: Random but not quite. J. Phys.: Condens. Matter 24(15), 155102 (2012)

    ADS  Google Scholar 

  5. C. Huang, K.T. Wikfeldt, T. Tokushima, D. Nordlund, Y. Harada, U. Bergmann, M. Niebuhr, T.M. Weiss, Y. Horikawa, M. Leetmaa, M.P. Ljungberg, O. Takahashi, A. Lenz, L. Ojamäe, A.P. Lyubartsev, S. Shin, L.G.M. Pettersson, A. Nilsson, The inhomogeneous structure of water at ambient conditions. Proc. Natl. Acad. Sci. USA 106(36), 15214–15218 (2009)

    Article  ADS  Google Scholar 

  6. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.Y. Mou, S.H. Chen, The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc. Natl. Acad. Sci. USA 104(47), 18387–18391 (2007)

    Article  ADS  Google Scholar 

  7. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C.Y. Mou, S.H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc. Natl. Acad. Sci. USA 104(2), 424–428 (2007)

    Article  ADS  Google Scholar 

  8. O. Mishima, H.E. Stanley, The relationship between liquid, supercooled and glassy water. Nature 396(6709), 329–335 (1998)

    Article  ADS  Google Scholar 

  9. N.J. English, J.S. Tse, Density fluctuations in liquid water. Phys. Rev. Lett. 106(3), 037801 (2011)

    Article  ADS  Google Scholar 

  10. T. Head-Gordon, M.E. Johnson, Tetrahedral structure or chains for liquid water. Proc. Natl. Acad. Sci. USA 103(21), 7973–7977 (2006)

    Article  ADS  Google Scholar 

  11. E.B. Moore, V. Molinero, Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479(7374), 506–508 (2011)

    Article  ADS  Google Scholar 

  12. C. Wang, H. Lu, Z. Wang, P. Xiu, B. Zhou, G. Zuo, R. Wan, J. Hu, H. Fang, Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys. Rev. Lett. 103(13), 137801–137804 (2009)

    Article  ADS  Google Scholar 

  13. G.N. Clark, G.L. Hura, J. Teixeira, A.K. Soper, T. Head-Gordon, Small-angle scattering and the structure of ambient liquid water. Proc. Natl. Acad. Sci. USA 107(32), 14003–14007 (2010)

    Article  ADS  Google Scholar 

  14. A.J. Stone, Water from first principles. Science 315(5816), 1228–1229 (2007)

    Article  Google Scholar 

  15. K. Stokely, M.G. Mazza, H.E. Stanley, G. Franzese, Effect of hydrogen bond cooperativity on the behavior of water. Proc. Natl. Acad. Sci. USA 107(4), 1301–1306 (2010)

    Article  ADS  Google Scholar 

  16. G.M. Marion, S.D. Jakubowski, The compressibility of ice to 2.0 kbar. Cold Reg. Sci. Technol. 38(2–3), 211–218 (2004)

    Article  Google Scholar 

  17. M. Erko, D. Wallacher, A. Hoell, T. Hauss, I. Zizak, O. Paris, Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. Phys. Chem. Chem. Phys. 14(11), 3852–3858 (2012)

    Article  Google Scholar 

  18. K. Rottger, A. Endriss, J. Ihringer, S. Doyle, W.F. Kuhs, Lattice-constants and thermal-expansion of H2O and D2O Ice ih between 10 and 265 K. Acta Crystallographica B 50, 644–648 (1994)

    Article  Google Scholar 

  19. P.T. Kiss, A. Baranyai, Density maximum and polarizable models of water. J. Chem. Phys. 137(8), 084506–084508 (2012)

    Article  ADS  Google Scholar 

  20. M.X. Gu, Y.C. Zhou, L.K. Pan, Z. Sun, S.Z. Wang, C.Q. Sun, Temperature dependence of the elastic and vibronic behavior of Si, Ge, and diamond crystals. J. Appl. Phys. 102(8), 083524 (2007)

    Article  ADS  Google Scholar 

  21. M.X. Gu, L.K. Pan, T.C.A. Yeung, B.K. Tay, C.Q. Sun, Atomistic origin of the thermally driven softening of Raman optical phonons in group III nitrides. J. Chem. Phys. C 111(36), 13606–13610 (2007)

    Article  Google Scholar 

  22. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of Graphene and Graphene multilayers. Nano Lett. 7(9), 2645–2649 (2007)

    Article  ADS  Google Scholar 

  23. X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, L.W. Yang, W.T. Zheng, C.Q. Sun, Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C–C bond in graphene. Nanoscale 4(2), 502–510 (2012)

    Article  ADS  Google Scholar 

  24. H.Q. Zhou, C.Y. Qiu, H.C. Yang, F. Yu, M.J. Chen, L.J. Hu, Y.J. Guo, L.F. Sun, Raman spectra and temperature-dependent Raman scattering of carbon nanoscrolls. Chem. Phys. Lett. 501(4–6), 475–479 (2011)

    Article  ADS  Google Scholar 

  25. X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, W.T. Zheng, C.Q. Sun, Frequency response of Graphene phonons to heating and compression. Appl. Phys. Lett. 99(13), 133108 (2011)

    Article  ADS  Google Scholar 

  26. J.W. Li, L.W. Yang, Z.F. Zhou, X.J. Liu, G.F. Xie, Y. Pan, C.Q. Sun, Mechanically stiffened and thermally softened Raman modes of ZnO crystal. J. Phys. Chem. B 114(4), 1648–1651 (2010)

    Article  Google Scholar 

  27. M.X. Gu, L.K. Pan, B.K. Tay, C.Q. Sun, Atomistic origin and temperature dependence of Raman optical redshift in nanostructures: A broken bond rule. J. Raman Spec. 38(6), 780–788 (2007)

    Article  ADS  Google Scholar 

  28. P.C. Cross, J. Burnham, P.A. Leighton, The Raman spectrum and the structure of water. J. Am. Chem. Soc. 59, 1134–1147 (1937)

    Article  Google Scholar 

  29. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H.K. Mao, R.J. Hemley, Convergent Raman features in high density amorphous ice, Ice VII, and Ice VIII under pressure. J. Phys. Chem. B 115(14), 3756–3760 (2011)

    Article  Google Scholar 

  30. Y. Yoshimura, S.T. Stewart, H.K. Mao, R.J. Hemley, In situ Raman spectroscopy of low-temperature/high-pressure transformations of H2O. J. Chem. Phys. 126(17), 174505 (2007)

    Article  ADS  Google Scholar 

  31. I. Durickovic, R. Claverie, P. Bourson, M. Marchetti, J.M. Chassot, M.D. Fontana, Water-ice phase transition probed by Raman spectroscopy. J. Raman Spec. 42(6), 1408–1412 (2011)

    Article  Google Scholar 

  32. M. Paolantoni, N.F. Lago, M. Albertí, A. Laganà, Tetrahedral Ordering in water: Raman profiles and their temperature dependence†. J. Phys. Chem. A 113(52), 15100–15105 (2009)

    Article  Google Scholar 

  33. M. Smyth, J. Kohanoff, Excess electron localization in solvated DNA bases. Phys. Rev. Lett. 106(23), 238108 (2011)

    Article  ADS  Google Scholar 

  34. J.D. Smith, C.D. Cappa, K.R. Wilson, R.C. Cohen, P.L. Geissler, R.J. Saykally, Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proc. Natl. Acad. Sci. USA 102(40), 14171–14174 (2005)

    Article  ADS  Google Scholar 

  35. F. Paesani, Temperature-dependent infrared spectroscopy of water from a first-principles approach. J. Phys. Chem. A 115(25), 6861–6871 (2011)

    Article  Google Scholar 

  36. Y. Marechal, Infrared-spectra of water. 1. Effect of temperature ans of H/D isotopic dilusion. J. Chem. Phys. 95(8), 5565–5573 (1991)

    Article  ADS  Google Scholar 

  37. G.E. Walrafen, Raman spectral studies of the effects of temperature on water structure. J. Chem. Phys. 47(1), 114–126 (1967)

    Article  ADS  Google Scholar 

  38. H. Suzuki, Y. Matsuzaki, A. Muraoka, M. Tachikawa, Raman spectroscopy of optically levitated supercooled water droplet. J. Chem. Phys. 136(23), 234508 (2012)

    Article  ADS  Google Scholar 

  39. K. Furic, V. Volovsek, Water ice at low temperatures and pressures: New Raman results. J. Mol. Struct. 976(1–3), 174–180 (2010)

    Article  ADS  Google Scholar 

  40. J.J. Shephard, J.S.O. Evans, C.G. Salzmann, structural relaxation of low-density amorphous ice upon thermal annealing. J. Phys. Chem. Lett. 3672–3676 (2013)

    Google Scholar 

  41. Y. Marechal, The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data. J. Mol. Struct. 1004(1–3), 146–155 (2011)

    Article  ADS  Google Scholar 

  42. X. Xue, Z.-Z. He, J. Liu, Detection of water-ice phase transition based on Raman spectrum. J. Raman Spec. 44(7), 1045–1048 (2013)

    Article  ADS  Google Scholar 

  43. C. Medcraft, D. McNaughton, C.D. Thompson, D.R.T. Appadoo, S. Bauerecker, E.G. Robertson, Water ice nanoparticles: size and temperature effects on the mid-infrared spectrum. Phys. Chem. Chem. Phys. 15(10), 3630–3639 (2013)

    Article  Google Scholar 

  44. C. Medcraft, D. McNaughton, C.D. Thompson, D. Appadoo, S. Bauerecker, E.G. Robertson, Size and temperature dependence in the Far-IR spectra of water ice particles. Astrophys. J. 758(1), 17 (2012)

    Article  ADS  Google Scholar 

  45. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  Google Scholar 

  46. G.P. Johari, H.A.M. Chew, T.C. Sivakumar, Effect of temperature and pressure on translational lattice vibrations and permittivity of ice. J. Chem. Phys. 80(10), 5163 (1984)

    Article  ADS  Google Scholar 

  47. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)

    Article  Google Scholar 

  48. E. Gilberg, M.J. Hanus, B. Foltz, Investigation of the electronic-structure of ice by high-resolution x-ray spectroscopy. J. Chem. Phys. 76(10), 5093–5097 (1982)

    Article  ADS  Google Scholar 

  49. T. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi, L.G.M. Pettersson, A. Nilsson, S. Shin, High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs. Chem. Phys. Lett. 460(4–6), 387–400 (2008)

    Article  ADS  Google Scholar 

  50. J.H. Guo, Y. Luo, A. Augustsson, J.E. Rubensson, C. Såthe, H. Ågren, H. Siegbahn, J. Nordgren, X-Ray emission spectroscopy of hydrogen bonding and electronic structure of liquid water. Phys. Rev. Lett. 89(13), 137402 (2002)

    Article  ADS  Google Scholar 

  51. A. Nilsson, L.G.M. Pettersson, Perspective on the structure of liquid water. Chem. Phys. 389(1–3), 1–34 (2011)

    ADS  Google Scholar 

  52. P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.A. Naslund, T.K. Hirsch, L. Ojamae, P. Glatzel, L.G.M. Pettersson, A. Nilsson, The structure of the first coordination shell in liquid water. Science 304(5673), 995–999 (2004)

    Article  ADS  Google Scholar 

  53. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H. Mao, R.J. Hemley, High-pressure x-ray diffraction and Raman spectroscopy of ice VIII. J. Chem. Phys. 124(2), 024502 (2006)

    Article  ADS  Google Scholar 

  54. M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, K. Aoki, Infrared investigation on ice VIII and the phase diagram of dense ices. Phys. Rev. B 68(1), 014106 (2003)

    Article  ADS  Google Scholar 

  55. A. Nilsson, C. Huang, L.G.M. Pettersson, Fluctuations in ambient water. J. Mol. Liq. 176, 2–16 (2012)

    Article  Google Scholar 

  56. C. Huang, K.T. Wikfeldt, D. Nordlund, U. Bergmann, T. McQueen, J. Sellberg, L.G.M. Pettersson, A. Nilsson, Wide-angle X-ray diffraction and molecular dynamics study of medium-range order in ambient and hot water. Phys. Chem. Chem. Phys. 13(44), 19997–20007 (2011)

    Article  Google Scholar 

  57. M. Matsumoto, Why does water expand when it cools? Phys. Rev. Lett. 103(1), 017801 (2009)

    Article  ADS  Google Scholar 

  58. J.C. Li, A.I. Kolesnikov, Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq. 100(1), 1–39 (2002)

    Article  Google Scholar 

  59. Y.S. Tu, H.P. Fang, Anomalies of liquid water at low temperature due to two types of hydrogen bonds. Phys. Rev. E 79(1), 016707 (2009)

    Article  ADS  Google Scholar 

  60. J.L. Kulp, D.L. Pompliano, F. Guarnieri, Diverse fragment clustering and water exclusion identify protein hot spots. J. Am. Chem. Soc. 133(28), 10740–10743 (2011)

    Article  Google Scholar 

  61. C.Q. Sun, Thermo-mechanical behavior of low-dimensional systems: The local bond average approach. Prog. Mater. Sci. 54(2), 179–307 (2009)

    Article  Google Scholar 

  62. L. Pauling, Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 69(3), 542–553 (1947)

    Article  Google Scholar 

  63. V.M. Goldschmidt, Crystal structure and chemical correlation. Ber. Deut. Chem. Ges. 60, 1263–1296 (1927)

    Article  Google Scholar 

  64. C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Article  Google Scholar 

  65. M.X. Gu, Y.C. Zhou, C.Q. Sun, Local bond average for the thermally induced lattice expansion. J. Phys. Chem. B 112(27), 7992–7995 (2008)

    Article  Google Scholar 

  66. T.D. Kuhne, R.Z. Khaliullin, Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water. Nat. Commun. 4, 1450 (2013)

    Article  ADS  Google Scholar 

  67. J.D. Smith, C.D. Cappa, B.M. Messer, W.S. Drisdell, R.C. Cohen, R.J. Saykally, Probing the local structure of liquid water by x-ray absorption spectroscopy. J. Phys. Chem. B 110(40), 20038–20045 (2006)

    Article  Google Scholar 

  68. A. Hermann, W.G. Schmidt, P. Schwerdtfeger, Resolving the optical spectrum of water: Coordination and electrostatic effects. Phys. Rev. Lett. 100(20), 207403 (2008)

    Article  ADS  Google Scholar 

  69. C.Q. Sun, Y. Nie, J. Pan, X. Zhang, S.Z. Ma, Y. Wang, W. Zheng, Zone-selective photoelectronic measurements of the local bonding and electronic dynamics associated with the monolayer skin and point defects of graphite. RSC Adv. 2(6), 2377–2383 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Thermally Driven Density and Phonon-Stiffness Oscillation. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_36

Download citation

Publish with us

Policies and ethics