Skip to main content

Compressed Ice: Inter Electron-Pair Repulsion

  • Chapter
  • First Online:
  • 2109 Accesses

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

Abstract

Coulomb repulsion and mechanical disparity within the H-bond differentiate ice from other materials in response to compression. Compression shortens and strengthens the O:H bond and meanwhile lengthens and softens H–O bond through repulsion toward O:H and H–O length symmetry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.Q. Sun, Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog. Mater. Sci. 54(2), 179–307 (2009)

    Article  Google Scholar 

  2. D. Errandonea, B. Schwager, R. Ditz, C. Gessmann, R. Boehler, M. Ross, Systematics of transition-metal melting. Phys. Rev. B 63(13), 132104 (2001)

    Article  ADS  Google Scholar 

  3. Z.W. Chen, C.Q. Sun, Y.C. Zhou, O.Y. Gang, Size dependence of the pressure-induced phase transition in nanocrystals. J. Phys. Chem. C 112(7), 2423–2427 (2008)

    Article  Google Scholar 

  4. P. Pruzan, J.C. Chervin, E. Wolanin, B. Canny, M. Gauthier, M. Hanfland, Phase diagram of ice in the VII-VIII-X domain. Vibrational and structural data for strongly compressed ice VIII. J. Raman. Spec. 34(7–8), 591–610 (2003)

    Google Scholar 

  5. K. Aoki, H. Yamawaki, M. Sakashita, Observation of Fano interference in high-pressure ice VII. Phys. Rev. Lett. 76(5), 784–786 (1996)

    Article  ADS  Google Scholar 

  6. M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, K. Aoki, Infrared absorption study of Fermi resonance and hydrogen-bond symmetrization of ice up to 141 GPa. Phys. Rev. B 60(18), 12644 (1999)

    Article  ADS  Google Scholar 

  7. G.M. Marion, S.D. Jakubowski, The compressibility of ice to 2.0 kbar. Cold Reg. Sci. Technol. 38(2–3), 211–218 (2004)

    Article  Google Scholar 

  8. J. Teixeira, High-pressure physics: the double identity of ice X. Nature 392(6673), 232–233 (1998)

    Article  ADS  Google Scholar 

  9. P. Loubeyre, R. LeToullec, E. Wolanin, M. Hanfland, D. Husermann, Modulated phases and proton centring in ice observed by X-ray diffraction up to 170 GPa. Nature 397(6719), 503–506 (1999)

    Article  ADS  Google Scholar 

  10. M. Benoit, D. Marx, M. Parrinello, Tunnelling and zero-point motion in high-pressure ice. Nature 392(6673), 258–261 (1998)

    Article  ADS  Google Scholar 

  11. W. Holzapfel, On the symmetry of the hydrogen bonds in ice VII. J. Chem. Phys. 56(2), 712 (1972)

    Article  ADS  Google Scholar 

  12. A.F. Goncharov, V.V. Struzhkin, H.-K. Mao, R.J. Hemley, Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds. Phys. Rev. Lett. 83(10), 1998–2001 (1999)

    Article  ADS  Google Scholar 

  13. A.F. Goncharov, V.V. Struzhkin, M.S. Somayazulu, R.J. Hemley, H.K. Mao, Compression of ice to 210 gigapascals: infrared evidence for a symmetric hydrogen-bonded phase. Science 273(5272), 218–220 (1996)

    Article  ADS  Google Scholar 

  14. I.A. Ryzhkin, “Symmetrical” phase and collective excitations in the proton system of ice. J. Exp. Theor. Phys. 88(6), 1208–1211 (1999)

    Article  ADS  Google Scholar 

  15. F.H. Stillinger, K.S. Schweizer, Ice under compression-transition to symmetrical hydrogen-bonds. J. Phys. Chem. 87(21), 4281–4288 (1983)

    Article  Google Scholar 

  16. L.N. Tian, A.I. Kolesnikov, J.C. Li, Ab initio simulation of hydrogen bonding in ices under ultra-high pressure. J. Chem. Phys. 137(20) (2012)

    Google Scholar 

  17. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)

    Article  Google Scholar 

  18. W.T. Zheng, C.Q. Sun, Underneath the fascinations of carbon nanotubes and graphene nanoribbons. Energ. Environ. Sci. 4(3), 627–655 (2011)

    Article  Google Scholar 

  19. J.W. Li, S.Z. Ma, X.J. Liu, Z.F. Zhou, C.Q. Sun, ZnO meso-mechano-thermo physical chemistry. Chem. Rev. 112(5), 2833–2852 (2012)

    Article  Google Scholar 

  20. M.X. Gu, Y.C. Zhou, L.K. Pan, Z. Sun, S.Z. Wang, C.Q. Sun, Temperature dependence of the elastic and vibronic behavior of Si, Ge, and diamond crystals. J. Appl. Phys. 102(8), 083524 (2007)

    Article  ADS  Google Scholar 

  21. M.X. Gu, L.K. Pan, T.C.A. Yeung, B.K. Tay, C.Q. Sun, Atomistic origin of the thermally driven softening of Raman optical phonons in group III nitrides. J. Phys. Chem. C 111(36), 13606–13610 (2007)

    Article  Google Scholar 

  22. C. Yang, Z.F. Zhou, J.W. Li, X.X. Yang, W. Qin, R. Jiang, N.G. Guo, Y. Wang, C.Q. Sun, Correlation between the band gap, elastic modulus, Raman shift and melting point of CdS, ZnS, and CdSe semiconductors and their size dependency. Nanoscale 4, 1304–1307 (2012)

    Article  ADS  Google Scholar 

  23. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H. Mao, R.J. Hemley, High-pressure x-ray diffraction and Raman spectroscopy of ice VIII. J. Chem. Phys. 124(2), 024502 (2006)

    Article  ADS  Google Scholar 

  24. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H.K. Mao, R.J. Hemley, Convergent Raman features in high density amorphous ice, ice VII, and ice VIII under pressure. J. Phys. Chem. B 115(14), 3756–3760 (2011)

    Article  Google Scholar 

  25. T. Okada, K. Komatsu, T. Kawamoto, T. Yamanaka, H. Kagi, Pressure response of Raman spectra of water and its implication to the change in hydrogen bond interaction. Spectrochimica Acta A 61(10), 2423–2427 (2005)

    Article  ADS  Google Scholar 

  26. I.V. Stiopkin, C. Weeraman, P.A. Pieniazek, F.Y. Shalhout, J.L. Skinner, A.V. Benderskii, Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474(7350), 192–195 (2011)

    Article  ADS  Google Scholar 

  27. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C.Y. Mou, S.H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc. Natl. Acad. Sci. U.S.A. 104(2), 424–428 (2007)

    Article  ADS  Google Scholar 

  28. D. Kang, J. Dai, Y. Hou, J. Yuan, Structure and vibrational spectra of small water clusters from first principles simulations. J. Chem. Phys. 133(1), 014302 (2010)

    Article  ADS  Google Scholar 

  29. K. Liu, J.D. Cruzan, R.J. Saykally, Water clusters. Science 271(5251), 929–933 (1996)

    Article  ADS  Google Scholar 

  30. R. Ludwig, Water: from clusters to the bulk. Angew. Chem. Int. Ed. 40(10), 1808–1827 (2001)

    Article  Google Scholar 

  31. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)

    Article  Google Scholar 

  32. B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, M. Scheffler, Hydrogen bonds and Van der Waals forces in ice at ambient and high pressures. Phys. Rev. Lett. 107(18), 185701 (2011)

    Article  ADS  Google Scholar 

  33. C.Q. Sun, H.L. Bai, B.K. Tay, S. Li, E.Y. Jiang, Dimension, strength, and chemical and thermal stability of a single C–C bond in carbon nanotubes. J. Phys. Chem. B 107(31), 7544–7546 (2003)

    Article  Google Scholar 

  34. C.Q. Sun, Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2(10), 1930–1961 (2010)

    Article  ADS  Google Scholar 

  35. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater. Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

  36. A. Hermann, P. Schwerdtfeger, Blueshifting the onset of optical UV absorption for water under pressure. Phys. Rev. Lett. 106(18), 187403 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Compressed Ice: Inter Electron-Pair Repulsion. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_34

Download citation

Publish with us

Policies and ethics