Skip to main content

Atomic Sheets, Nanotubes, and Nanowires

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

  • 2113 Accesses

Abstract

The elastic modulus is proportional to the binding energy density (E z /d 3 z ), while the melting point to the atomic cohesive energy (zE z ), which causes the paradox in observations at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Super-tough carbon-nanotube fibres—these extraordinary composite fibres can be woven into electronic textiles. Nature 423(6941), 703 (2003)

    ADS  Google Scholar 

  2. G. Ma, Y. Ren, J. Guo, T. Xiao, F. Li, H.M. Cheng, Z.R. Zhou, K. Liao, How long can single-walled carbon nanotube ropes last under static or dynamic fatigue? Appl. Phys. Lett. 92(8), 083105 (2008)

    ADS  Google Scholar 

  3. P.M. Agrawal, B.S. Sudalayandi, L.M. Raff, R. Komanduri, A comparison of different methods of Young’s modulus determination for single-wall carbon nanotubes (SWCNT) using molecular dynamics (MD) simulations. Comput. Mater. Sci. 38(2), 271–281 (2006)

    Google Scholar 

  4. K. Asaka, T. Kizuka, Atomistic dynamics of deformation, fracture, and joining of individual single-walled carbon nanotubes. Phys. Rev. B 72(11), 115431 (2005)

    ADS  Google Scholar 

  5. M. Nakajima, F. Arai, T. Fukuda, In situ measurement of Young’s modulus of carbon nanotubes inside a TEM through a hybrid nanorobotic manipulation system. IEEE Trans. Nanotechnol. 5(3), 243–248 (2006)

    ADS  Google Scholar 

  6. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Young’s modulus of single-walled nanotubes. Phys. Rev. B 58(20), 14013–14019 (1998)

    ADS  Google Scholar 

  7. K. Enomoto, S. Kitakata, T. Yasuhara, N. Ohtake, T. Kuzumaki, Y. Mitsuda, Measurement of Young’s modulus of carbon nanotubes by nanoprobe manipulation in a transmission electron microscope. Appl. Phys. Lett. 88(15), 153115 (2006)

    ADS  Google Scholar 

  8. F. Scarpa, S. Adhikari, A mechanical equivalence for Poisson’s ratio and thickness of C–C bonds in single wall carbon nanotubes. J. Phys. D-Appl. Phys. 41(8), 085306 (2008)

    ADS  Google Scholar 

  9. E. Hernandez, C. Goze, P. Bernier, A. Rubio, Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80(20), 4502–4505 (1998)

    ADS  Google Scholar 

  10. B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511–2514 (1996)

    ADS  Google Scholar 

  11. T. Vodenitcharova, L.C. Zhang, Effective wall thickness of a single-walled carbon nanotube. Phys. Rev. B 68(16), 165401 (2003)

    ADS  Google Scholar 

  12. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997)

    Google Scholar 

  13. M.R. Falvo, G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn, R. Superfine, Bending and buckling of carbon nanotubes under large strain. Nature 389(6651), 582–584 (1997)

    ADS  Google Scholar 

  14. E.T. Thostenson, Z.F. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    Google Scholar 

  15. J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, L. Forro, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82(5), 944–947 (1999)

    ADS  Google Scholar 

  16. J.P. Lu, Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79(7), 1297–1300 (1997)

    ADS  Google Scholar 

  17. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678–680 (1996)

    ADS  Google Scholar 

  18. G. Zhang, B.W. Li, Wall “thickness” effects on Raman spectrum shift, thermal conductivity, and Young’s modulus of single-walled nanotubes. J. Phys. Chem. B 109(50), 23823–23826 (2005)

    Google Scholar 

  19. M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley, New York, 1993)

    Google Scholar 

  20. X. Zhou, J.J. Zhou, Z.C. Ou-Yang, Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev. B 62(20), 13692–13696 (2000)

    ADS  Google Scholar 

  21. S. Li, T.H. Yip, C.Q. Sun, S. Widjaja, M.H. Liang, Origin of self-aligned nano-domains in MgB2. in 3rd Asian Meeting on Electroceramics (AMEC-3).Singapore, (2003)

    Google Scholar 

  22. Z.C. Tu, Z. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys. Rev. B 65(23), 233407 (2002)

    ADS  Google Scholar 

  23. M. Terrones, H. Terrones, F. Banhart, J.C. Charlier, P.M. Ajayan, Coalescence of single-walled carbon nanotubes. Science 288(5469), 1226–1229 (2000)

    ADS  Google Scholar 

  24. B. An, S. Fukuyama, K. Yokogawa, M. Yoshimura, Surface superstructure of carbon nanotubes on highly oriented pyrolytic graphite annealed at elevated temperatures. Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 37(6B), 3809–3811 (1998)

    Google Scholar 

  25. R.F. Egerton, P. Li, M. Malac, Radiation damage in the TEM and SEM. Micron 35(6), 399–409 (2004)

    Google Scholar 

  26. P. Nikolaev, A. Thess, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Diameter doubling of single-wall nanotubes. Chem. Phys. Lett. 266(5–6), 422–426 (1997)

    ADS  Google Scholar 

  27. K. Metenier, S. Bonnamy, F. Beguin, C. Journet, P. Bernier, M.L. de La Chapelle, O. Chauvet, S. Lefrant, Coalescence of single-walled carbon nanotubes and formation of multi-walled carbon nanotubes under high-temperature treatments. Carbon 40(10), 1765–1773 (2002)

    Google Scholar 

  28. J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy. Acc. Chem. Res. 35(12), 1054–1062 (2002)

    Google Scholar 

  29. R. Andrews, D. Jacques, D. Qian, E.C. Dickey, Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39(11), 1681–1687 (2001)

    Google Scholar 

  30. S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, P.C. Eklund, Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80(17), 3779–3782 (1998)

    ADS  Google Scholar 

  31. D. Bom, R. Andrews, D. Jacques, J. Anthony, B.L. Chen, M.S. Meier, J.P. Selegue, Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett. 2(6), 615–619 (2002)

    ADS  Google Scholar 

  32. P.M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B.Q. Wei, H. Lezec, G. Ramanath, T.W. Ebbesen, Nanotubes in a flash—ignition and reconstruction. Science 296(5568), 705 (2002)

    Google Scholar 

  33. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    ADS  Google Scholar 

  34. E. Cadelano, P.L. Palla, S. Giordano, L. Colombo, Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 102(23), 235502 (2009)

    ADS  Google Scholar 

  35. C.O. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Graphene at the edge: stability and dynamics. Science 323(5922), 1705–1708 (2009)

    ADS  Google Scholar 

  36. C.Q. Sun, Y. Wang, B.K. Tay, S. Li, H. Huang, Y.B. Zhang, Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom. J. Phys. Chem. B 106(41), 10701–10705 (2002)

    Google Scholar 

  37. C.Q. Sun, B.K. Tay, S.P. Lau, X.W. Sun, X.T. Zeng, S. Li, H.L. Bai, H. Liu, Z.H. Liu, E.Y. Jiang, Bond contraction and lone pair interaction at nitride surfaces. J. Appl. Phys. 90(5), 2615–2617 (2001)

    ADS  Google Scholar 

  38. T. Halicioglu, Calculation of surface energies for low index planes of diamond. Surf. Sci. 259(1–2), L714–L718 (1991)

    ADS  Google Scholar 

  39. F. Scarpa, S. Adhikari, R. Chowdhury, The transverse elasticity of bilayer graphene. Phys. Lett. A 374(19–20), 2053–2057 (2010)

    ADS  Google Scholar 

  40. F. Scarpa, S. Adhikari, A.J. Gil, C. Remillat, The bending of single layer graphene sheets: the lattice versus continuum approach. Nanotechnology 21(12), 125702 (2010)

    ADS  Google Scholar 

  41. C.Q. Sun, S.Y. Fu, Y.G. Nie, Dominance of broken bonds and unpaired nonbonding pi-electrons in the band gap expansion and edge states generation in graphene nanoribbons. J Chem Phys C 112(48), 18927–18934 (2008)

    Google Scholar 

  42. C.Q. Sun, Y. Sun, Y.G. Nie, Y. Wang, J.S. Pan, G. Ouyang, L.K. Pan, Z. Sun, Coordination-resolved C–C bond length and the C 1 s binding energy of carbon allotropes and the effective atomic coordination of the few-layer graphene. J. Chem. Phys. C 113(37), 16464–16467 (2009)

    Google Scholar 

  43. P. Bennich, C. Puglia, P.A. Bruhwiler, A. Nilsson, A.J. Maxwell, A. Sandell, N. Martensson, P. Rudolf, Photoemission study of K on graphite. Phys. Rev. B 59(12), 8292–8304 (1999)

    ADS  Google Scholar 

  44. C.S. Yannoni, P.P. Bernier, D.S. Bethune, G. Meijer, J.R. Salem, NMR determination of the bond lengths in C60. J. Am. Chem. Soc. 113(8), 3190–3192 (1991)

    Google Scholar 

  45. W.T. Zheng, C.Q. Sun, Underneath the fascinations of carbon nanotubes and graphene nanoribbons. Energy & Environ. Sci. 4(3), 627–655 (2011)

    Google Scholar 

  46. X.D. Han, Z. Zhang, Z.L. Wang, Experimental nanomechanics of one-dimensional nanomaterials by in situ microscopy. Nano 2(5), 249–271 (2007)

    MathSciNet  Google Scholar 

  47. J.P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N.A. Burnham, L. Forro, Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. 11(2), 161–165 (1999)

    Google Scholar 

  48. Q.Z. Zhao, M.B. Nardelli, J. Bernholc, Ultimate strength of carbon nanotubes: a theoretical study. Phys. Rev. B 65(14), 144105 (2002)

    ADS  Google Scholar 

  49. M.B. Nardelli, B.I. Yakobson, J. Bernholc, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57(8), R4277–R4280 (1998)

    ADS  Google Scholar 

  50. D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74(25), 3803–3805 (1999)

    ADS  Google Scholar 

  51. J.Y. Huang, S. Chen, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Dresselhaus, Z.F. Ren, Superplastic carbon nanotubes—conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes. Nature 439(7074), 281 (2006)

    ADS  Google Scholar 

  52. M.B. Nardelli, B.I. Yakobson, J. Bernholc, Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 81(21), 4656–4659 (1998)

    ADS  Google Scholar 

  53. D. Orlikowski, M.B. Nardelli, J. Bernholc, C. Roland, Ad-dimers on strained carbon nanotubes: a new route for quantum dot formation? Phys. Rev. Lett. 83(20), 4132–4135 (1999)

    ADS  Google Scholar 

  54. P. Calvert, Nanotube composites: a recipe for strength. Nature 399(6733), 210–211 (1999)

    ADS  Google Scholar 

  55. L. Dai, C.H. Sow, C.T. Lim, W.C.D. Cheong, V.B.C. Tan, Numerical investigations into the tensile behavior of TiO2 nanowires: structural deformation, mechanical properties, and size effects. Nano Lett. 9(2), 576–582 (2009)

    ADS  Google Scholar 

  56. R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)

    ADS  Google Scholar 

  57. A.J. Kulkarni, M. Zhou, F.J. Ke, Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16(12), 2749–2756 (2005)

    ADS  Google Scholar 

  58. C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96(7), 075505 (2006)

    ADS  Google Scholar 

  59. G.Y. Jing, H.L. Duan, X.M. Sun, Z.S. Zhang, J. Xu, Y.D. Li, J.X. Wang, D.P. Yu, Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73(23), 235409 (2006)

    ADS  Google Scholar 

  60. X.D. Li, X.N. Wang, Q.H. Xiong, P.C. Eklund, Mechanical properties of ZnS nanobelts. Nano Lett. 5(10), 1982–1986 (2005)

    ADS  Google Scholar 

  61. J.H. Song, X.D. Wang, E. Riedo, Z.L. Wang, Elastic property of vertically aligned nanowires. Nano Lett. 5(10), 1954–1958 (2005)

    ADS  Google Scholar 

  62. X.D. Bai, P.X. Gao, Z.L. Wang, E.G. Wang, Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 82(26), 4806–4808 (2003)

    ADS  Google Scholar 

  63. K. Yum, Z.Y. Wang, A.P. Suryavanshi, M.F. Yu, Experimental measurement and model analysis of damping effect in nanoscale mechanical beam resonators in air. J. Appl. Phys. 96(7), 3933–3938 (2004)

    ADS  Google Scholar 

  64. S.G. Nilsson, X. Borrise, L. Montelius, Size effect on Young’s modulus of thin chromium cantilevers. Appl. Phys. Lett. 85(16), 3555–3557 (2004)

    ADS  Google Scholar 

  65. X.X. Li, T. Ono, Y.L. Wang, M. Esashi, Ultrathin single-crystalline-silicon cantilever resonators: fabrication technology and significant specimen size effect on Young’s modulus. Appl. Phys. Lett. 83(15), 3081–3083 (2003)

    ADS  Google Scholar 

  66. C. Gaire, D.X. Ye, F. Tang, R.C. Picu, G.C. Wang, T.M. Lu, Mechanical testing of isolated amorphous silicon slanted nanorods. J. Nanosci. Nanotechnol. 5(11), 1893–1897 (2005)

    Google Scholar 

  67. B. Wu, A. Heidelberg, J.J. Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4(7), 525–529 (2005)

    ADS  Google Scholar 

  68. B. Wu, A. Heidelberg, J.J. Boland, J.E. Sader, X.M. Sun, Y.D. Li, Microstructure-hardened silver nanowires. Nano Lett. 6(3), 468–472 (2006)

    ADS  Google Scholar 

  69. H. Ni, X.D. Li, Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 17(14), 3591–3597 (2006)

    ADS  Google Scholar 

  70. X.F. Wu, Y.A. Dzenis, Size effect in polymer nanofibers under tension. J. Appl. Phys. 102(4), 044306 (2007)

    ADS  Google Scholar 

  71. M.K. Shin, S.I. Kim, S.J. Kim, S.K. Kim, H. Lee, G.M. Spinks, Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl. Phys. Lett. 89(23), 231929 (2006)

    ADS  Google Scholar 

  72. M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski, Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B 70(24), 245416 (2004)

    ADS  Google Scholar 

  73. J.A. Astrom, A.V. Krasheninnikov, K. Nordlund, Carbon nanotube mats and fibers with irradiation-improved mechanical characteristics: a theoretical model. Phys. Rev. Lett. 93(21), 215503 (2004)

    ADS  Google Scholar 

  74. A. Kis, G. Csanyi, J.P. Salvetat, T.N. Lee, E. Couteau, A.J. Kulik, W. Benoit, J. Brugger, L. Forro, Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 3(3), 153–157 (2004)

    ADS  Google Scholar 

  75. N.E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue (Prentice-Hall, NJ, 1999)

    Google Scholar 

  76. M.F. Ashby, D.R.H. Jones, Engineering Materials, vol. 1 (Pergamon, Oxford, 1980)

    Google Scholar 

  77. J.G. Dash, History of the search for continuous melting. Rev. Mod. Phys. 71(5), 1737–1743 (1999)

    ADS  MathSciNet  Google Scholar 

  78. L. Lu, M.L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature. Science 287(5457), 1463–1466 (2000)

    ADS  Google Scholar 

  79. Y.M. Wang, E. Ma, M.W. Chen, Enhanced tensile ductility and toughness in nanostructured Cu. Appl. Phys. Lett. 80(13), 2395–2397 (2002)

    ADS  Google Scholar 

  80. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45(2), 103–189 (2000)

    Google Scholar 

  81. Y. Champion, C. Langlois, S. Guerin-Mailly, P. Langlois, J.L. Bonnentien, M.J. Hytch, Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300(5617), 310–311 (2003)

    ADS  Google Scholar 

  82. X.D. Han, K. Zheng, Y.F. Zhang, X.N. Zhang, Z. Zhang, Z.L. Wang, Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19(16), 2112–2118 (2007)

    Google Scholar 

  83. X.D. Han, Y.F. Zhang, K. Zheng, X.N. Zhang, Z. Zhang, Y.J. Hao, X.Y. Guo, J. Yuan, Z.L. Wang, Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 7(2), 452–457 (2007)

    ADS  Google Scholar 

  84. P.E. Marszalek, W.J. Greenleaf, H.B. Li, A.F. Oberhauser, J.M. Fernandez, Atomic force microscopy captures quantized plastic deformation in gold nanowires. Proc. Natl. Acad. Sci. U. S. A. 97(12), 6282–6286 (2000)

    ADS  Google Scholar 

  85. F.Y. Wang, W. Sun, H.B. Wang, J.W. Zhao, M. Kiguchi, C.Q. Sun, Investigation on the effect of atomic defects on the breaking behaviors of gold nanowires. J. Nanopart. Res. 14(9), 1082 (2012)

    Google Scholar 

  86. M. Chang, X. Liu, F.-C. Chang, J.R. Deka, Mechanical characterization of a single gold nanowire. J. Nanosci. Nanotechnol. 13(8), 5832–5839 (2013)

    Google Scholar 

  87. Y. Yan, H. Yin, Q.P. Sun, Y. Huo, Rate dependence of temperature fields and energy dissipations in non-static pseudoelasticity. Continuum Mech. Thermodyn. 24(4–6), 675–695 (2012)

    ADS  Google Scholar 

  88. A. Amini, W.Y. Yan, Q.P. Sun, Depth dependency of indentation hardness during solid-state phase transition of shape memory alloys. Appl. Phys. Lett. 99(2), 3603933 (2011)

    Google Scholar 

  89. F.Y. Wang, W. Sun, Y.J. Gao, Y.H. Liu, J.W. Zhao, C.Q. Sun, Investigation on the most probable breaking behaviors of copper nanowires with the dependence of temperature. Comput. Mater. Sci. 67, 182–187 (2013)

    Google Scholar 

  90. C.Q. Sun, Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog. Mater Sci. 54(2), 179–307 (2009)

    Google Scholar 

  91. S.C. Santucci, A. Goldoni, R. Larciprete, S. Lizzit, M. Bertolo, A. Baraldi, C. Masciovecchio, Calorimetry at surfaces using high-resolution core-level photoemission. Phys. Rev. Lett. 93(10), 106105 (2004)

    ADS  Google Scholar 

  92. W.Y. Hu, S.G. Xiao, J.Y. Yang, Z. Zhang, Melting evolution and diffusion behavior of vanadium nanoparticles. Eur. Phys. J. B 45(4), 547–554 (2005)

    ADS  Google Scholar 

  93. H.H. Liu, E.Y. Jiang, H.L. Bai, P. Wu, Z.Q. Li, C.Q. Sun, Shell-resolved melting kinetics of icosahedral cluster. J. Nanosci. Nanotechnol. 9(3), 2051–2054 (2009)

    Google Scholar 

  94. H. Reiss, I.B. Wilson, The effect of surface on melting point. J. Colloid Sci. 3(6), 551–561 (1948)

    Google Scholar 

  95. H. Sakai, Surface-induced melting of small particles. Surf. Sci. 351(1–3), 285–291 (1996)

    ADS  Google Scholar 

  96. C.R.M. Wronski, Size dependence of melting point of small particles of TiN. Br. J. Appl. Phys. 18(12), 1731–1734 (1967)

    ADS  Google Scholar 

  97. K.K. Nanda, S.N. Sahu, S.N. Behera, Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66(1), 013208 (2002)

    ADS  Google Scholar 

  98. M. Wautelet, Phase stability of electronically excited Si nanoparticles. J. Phys.-Condens. Matter 16(12), L163–L166 (2004)

    ADS  Google Scholar 

  99. D. Ganguli, Size effect in melting: a historical overview. Trans. Indian Ceram. Soc. 67(2), 49–62 (2008)

    Google Scholar 

  100. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    ADS  Google Scholar 

  101. Y. Kondo, K. Takayanagi, Synthesis and characterization of helical multi-shell gold nanowires. Science 289(5479), 606–608 (2000)

    ADS  Google Scholar 

  102. F. Sato, A.S. Moreira, P.Z. Coura, S.O. Dantas, S.B. Legoas, D. Ugarte, D.S. Galvao, Computer simulations of gold nanowire formation: the role of outlayer atoms. Appl. Phys. A-Mater. Sci. Process. 81(8), 1527–1531 (2005)

    ADS  Google Scholar 

  103. C.Q. Sun, H.L. Bai, S. Li, B.K. Tay, C. Li, T.P. Chen, E.Y. Jiang, Length, strength, extensibility, and thermal stability of a Au–Au bond in the gold monatomic chain. J. Phys. Chem. B 108(7), 2162–2167 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Atomic Sheets, Nanotubes, and Nanowires. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_26

Download citation

Publish with us

Policies and ethics