Skip to main content

Concluding Remarks

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

  • 2092 Accesses

Abstract

Bond relaxation in length and energy and the associated local quantum and polarization dictate the property change of a substance. The BOLS correlation notation is able entrapment to reconcile the performance of undercoordinated systems such as defects, surfaces, and nanostructures, in particular, the size dependency and size emergency of nanostructures. The atomic CN or skin-resolved bond relaxation in length and energy and the associated bonding electron entrapment and non-bonding electron polarization are the key. The core–shell configuration and the LBA approach provides the universal ingredients to formulate the coordination-resolved property change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.Q. Sun, Y. Sun, Y.G. Nie, Y. Wang, J.S. Pan, G. Ouyang, L.K. Pan, Z. Sun, Coordination-resolved C–C bond length and the C 1 s binding energy of carbon allotropes and the effective atomic coordination of the few-layer Graphene. J. Chem. Phys. C. 113(37), 16464–16467 (2009)

    Article  Google Scholar 

  2. X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, L.W. Yang, W.T. Zheng, C.Q. Sun, Raman spectroscopic determination of the length, strength, compressibility, debye temperature, elasticity, and force constant of the C–C bond in Graphene. Nanoscale 4(2), 502–510 (2012)

    Article  ADS  Google Scholar 

  3. W.T. Zheng, C.Q. Sun, Underneath the fascinations of carbon nanotubes and Graphene nanoribbons. Energy Environ. Sci. 4(3), 627–655 (2011)

    Article  Google Scholar 

  4. C.Q. Sun, Y. Nie, J. Pan, X. Zhang, S.Z. Ma, Y. Wang, W. Zheng, Zone-selective photoelectronic measurements of the local bonding and electronic dynamics associated with the monolayer skin and point defects of graphite. RSC Adv. 2(6), 2377–2383 (2012)

    Article  Google Scholar 

  5. S. Ma, H. Liang, X. Wang, J. Zhou, L. Li, C.Q. Sun, Controlling the band gap of ZnO by programmable annealing. J. Phys. Chem. C 115(42), 20487–20490 (2011)

    Article  Google Scholar 

  6. X.J. Liu, L.K. Pan, Z. Sun, Y.M. Chen, X.X. Yang, L.W. Yang, Z.F. Zhou, C.Q. Sun, Strain engineering of the elasticity and the Raman shift of nanostructured TiO2. J. Appl. Phys. 110(4), 044322 (2011)

    Article  ADS  Google Scholar 

  7. J.W. Li, S.Z. Ma, X.J. Liu, Z.F. Zhou, C.Q. Sun, ZnO meso-mechano-thermo physical chemistry. Chem. Rev. 112(5), 2833–2852 (2012)

    Article  Google Scholar 

  8. Y.M. Chen, J.W. Li, X.X. Yang, Z.F. Zhou, C.Q. Sun, Band gap modulation of the IV, III-V, and II-VI semiconductors by controlling the solid size and dimension and the temperature of operation. J. Chem. Phys. C. 115(47), 23338–23343 (2011)

    Article  Google Scholar 

  9. Y. Nie, Y. Wang, X. Zhang, J. Pan, W. Zheng, C.Q. Sun, Catalytic nature of under- and hetero-coordinated atoms resolved using zone-selective photoelectron spectroscopy (ZPS). Vacuum 100, 87–91 (2014)

    Article  ADS  Google Scholar 

  10. X.X. Yang, Z.F. Zhou, Y. Wang, J.W. Li, N.G. Guo, W.T. Zheng, J.Z. Peng, C.Q. Sun, Raman spectroscopic determination of the length, energy, debye temperature, and compressibility of the C–C bond in carbon allotropes. Chem. Phys. Lett. 575, 86–90 (2013)

    Article  ADS  Google Scholar 

  11. X.X. Yang, Z.F. Zhou, Y. Wang, R. Jiang, W.T. Zheng, C.Q. Sun, Raman spectroscopy determination of the debye temperature and atomic cohesive energy of CdS, CdSe, Bi2Se3, and Sb2Te3 nanostructures. J. Appl. Phys. 112(8), 4759207 (2012)

    Article  Google Scholar 

  12. W. Qin, Y. Wang, Y.L. Huang, Z.F. Zhou, C. Yang, C.Q. Sun, Bond order resolved 3d(5/2) and valence band chemical shifts of Ag surfaces and nanoclusters. J. Phys. Chem. A. 116(30), 7892–7897 (2012)

    Article  Google Scholar 

  13. E.S.M. Goh, T.P. Chen, H.Y. Yang, Y. Liu, C.Q. Sun, Size-suppressed dielectrics of Ge nanocrystals: skin-deep quantum entrapment. Nanoscale 4(4), 1308–1311 (2012)

    Article  ADS  Google Scholar 

  14. E.S.M. Goh, T.P. Chen, S.F. Huang, Y.C. Liu, C.Q. Sun, Bandgap expansion and dielectric suppression of self-assembled Ge nanocrystals. J. Appl. Phys. 109(6), 064307 (2011)

    Article  ADS  Google Scholar 

  15. J.W. Li, L.W. Yang, Z.F. Zhou, P.K. Chu, X.H. Wang, J. Zhou, L.T. Li, C.Q. Sun, Bandgap modulation in ZnO by size, pressure, and temperature. J. Chem. Phys. C. 114(31), 13370–13374 (2010)

    Article  Google Scholar 

  16. L.K. Pan, S.Q. Xu, W. Qin, X.J. Liu, Z. Sun, W.T. Zheng, and C.Q. Sun, Skin dominance of the dielectric-electronic-phononic-photonic attribute of nanostructured silicon. Surface Science Reports, 2013. 68(3-4), 418–455 (2013)

    Google Scholar 

  17. Y. Guo, Y.F. Zhang, X.Y. Bao, T.Z. Han, Z. Tang, L.X. Zhang, W.G. Zhu, E.G. Wang, Q. Niu, Z.Q. Qiu, J.F. Jia, Z.X. Zhao, Q.K. Xue, Superconductivity modulated by quantum size effects. Science 306(5703), 1915–1917 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Concluding Remarks. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_21

Download citation

Publish with us

Policies and ethics