Skip to main content

Functionalities of Non-Bonding Electrons: Size Emergence

  • Chapter
  • First Online:
  • 2148 Accesses

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

Abstract

The coupling of the entrapment and the polarization of the non-bonding lone electrons by the densely entrapped core and bonding electrons derives emerging properties that the bulk counterpart does not show. Similar to the lone pairs and dipoles, the polarized lone electrons neither follow the dispersion relationships nor occupy the allowed states in the valence band and below, but they generate the mid-gap impurity states near E F. Polarization happens at sites with even lower atomic CN, which gives rise to the nonzero spin (carrier of topologic insulator), conductor–insulator transition, surface plasmonic enhancement, and the superhydrophobicity, superfluidity, superlubricity, and supersolidity. The dominance of entrapment derives the acceptor-type catalysis, and the dominance of polarization results in donor-type catalyst of metals at the nanoscale. These emerging attributes become more significant when the atomic CN is even lower. UV irradiation, hydrogenation, or contamination may annihilate these features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.J. Cox, J.G. Louderback, S.E. Apsel, L.A. Bloomfield, Magnetic in 4d-transition metal-clusters. Phys. Rev. B 49(17), 12295–12298 (1994)

    ADS  Google Scholar 

  2. T. Okamoto, H. Maki, Y. Oba, S. Yabuuchi, T. Sato, E. Ohta, Electrical detection of ferromagnetism in Pd nanoparticles by magnetoresistance measurement. J. Appl. Phys. 106(2), 023908 (2009)

    ADS  Google Scholar 

  3. J. Bartolome, F. Bartolome, L.M. Garcia, E. Roduner, Y. Akdogan, F. Wilhelm, A. Rogalev, Magnetization of Pt-13 clusters supported in a NaY zeolite: a XANES and XMCD study. Phys. Rev. B 80(1), 014404 (2009)

    ADS  Google Scholar 

  4. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35(7), 583–592 (2006)

    Google Scholar 

  5. W.H. Zhong, C.Q. Sun, S. Li, H.L. Bai, E.Y. Jiang, Impact of bond-order loss on surface and nanosolid magnetism. Acta Mater. 53(11), 3207–3214 (2005)

    Google Scholar 

  6. X. Liu, M. Bauer, H. Bertagnolli, E. Roduner, J. van Slageren, F. Phillipp, Structure and magnetization of small monodisperse platinum clusters. Phys. Rev. Lett. 97(25), 253401 (2006)

    ADS  Google Scholar 

  7. Y. Yamamoto, T. Miura, Y. Nakae, T. Teranishi, M. Miyake, H. Hori, Magnetic properties of the noble metal nanoparticles protected by polymer. Phys. B-Condens. Matter 329, 1183–1184 (2003)

    ADS  Google Scholar 

  8. A.J. Cox, J.G. Louderback, L.A. Bloomfield, Experimental-observation of magnetism in Rhodium clusters. Phys. Rev. Lett. 71(6), 923–926 (1993)

    ADS  Google Scholar 

  9. C.Q. Sun, Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Google Scholar 

  10. Y. Wang, Y. Huang, Y. Song, X.Y. Zhang, Y.F. Ma, J.J. Liang, Y.S. Chen, Room-temperature ferromagnetism of graphene. Nano. Lett. 9(1), 220–224 (2009)

    ADS  Google Scholar 

  11. T. Saito, Magnetic properties of carbon materials prepared from polyvinyl chloride. J. Appl. Phys. 105(1), 013902 (2009)

    ADS  Google Scholar 

  12. O.V. Yazyev, Magnetism in disordered graphene and irradiated graphite. Phys. Rev. Lett. 101(3), 037203 (2008)

    ADS  Google Scholar 

  13. C.Q. Sun, Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2(10), 1930–1961 (2010)

    ADS  Google Scholar 

  14. X. Zhang, Y.G. Nie, W.T. Zheng, J.L. Kuo, C.Q. Sun, Discriminative generation and hydrogen modulation of the Dirac-Fermi polarons at graphene edges and atomic vacancies. Carbon 49(11), 3615–3621 (2011)

    Google Scholar 

  15. C. Liu, F. Yun, H. Morkoc, Ferromagnetism of ZnO and GaN: a review. J. Mater. Sci.-Mater. Electron. 16(9), 555–597 (2005)

    Google Scholar 

  16. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291(5505), 854–856 (2001)

    ADS  Google Scholar 

  17. J.M.D. Coey, Dilute magnetic oxides. Curr. Opin. Solid State Mater. Sci. 10(2), 83–92 (2006)

    ADS  Google Scholar 

  18. F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng, Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R-Reports 62(1), 1–35 (2008)

    Google Scholar 

  19. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4(2), 173–179 (2005)

    ADS  Google Scholar 

  20. Y. Jiang, K.H. Wu, J. Ma, B. Wu, E.G. Wang, P. Ebert, Quantum size effects in the nonmetal to metal transition of two-dimensional Al islands. Phys. Rev. B 76(23), 235434 (2007)

    ADS  Google Scholar 

  21. C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Size-dependent chemistry: properties of nanocrystals. Chem. -a Eur. J. 8(1), 29–35 (2002)

    Google Scholar 

  22. B. Wang, X.D. Xiao, X.X. Huang, P. Sheng, J.G. Hou, Single-electron tunneling study of two-dimensional gold clusters. Appl. Phys. Lett. 77(8), 1179–1181 (2000)

    ADS  Google Scholar 

  23. B. Wang, K.D. Wang, W. Lu, J.L. Yang, J.G. Hou, Size-dependent tunneling differential conductance spectra of crystalline Pd nanoparticles. Phys. Rev. B 70(20), 205411 (2004)

    ADS  Google Scholar 

  24. I. Matsuda, C. Liu, T. Hirahara, M. Ueno, T. Tanikawa, T. Kanagawa, R. Hobara, S. Yamazaki, S. Hasegawa, Electron-phonon interaction and localization of surface-state carriers in a metallic monolayer. Phys. Rev. Lett. 99(14), 146805 (2007)

    ADS  Google Scholar 

  25. M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley, New York, 1993)

    Google Scholar 

  26. L.K. Pan, C.Q. Sun, T.P. Chen, S. Li, C.M. Li, B.K. Tay, Dielectric suppression of nanosolid silicon. Nanotechnology 15(12), 1802–1806 (2004)

    ADS  Google Scholar 

  27. M.S. Chen, D.W. Goodman, The structure of catalytically active gold on Titania. Science 306(5694), 252–255 (2004)

    ADS  Google Scholar 

  28. S. Dahl, A. Logadottir, R.C. Egeberg, J.H. Larsen, I. Chorkendorff, E. Tornqvist, J.K. Norskov, Role of steps in N-2 activation on Ru(0001). Phys. Rev. Lett. 83(9), 1814–1817 (1999)

    ADS  Google Scholar 

  29. B. Hammer, Bond activation at monatomic steps: NO dissociation at corrugated Ru(0001). Phys. Rev. Lett. 83(18), 3681 (1999)

    ADS  Google Scholar 

  30. T. Zambelli, J. Wintterlin, J. Trost, G. Ertl, Identification of the “active sites” of a surface-catalyzed reaction. Science 273(5282), 1688–1690 (1996)

    ADS  Google Scholar 

  31. P. Kratzer, E. Pehlke, M. Scheffler, M.B. Raschke, U. Hofer, Highly site-specific H-2 adsorption on vicinal Si(001) surfaces. Phys. Rev. Lett. 81(25), 5596–5599 (1998)

    ADS  Google Scholar 

  32. W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, K. Lu, Nitriding iron at lower temperatures. Science 299(5607), 686–688 (2003)

    ADS  Google Scholar 

  33. G. Fratesi, S. de Gironcoli, Analysis of methane-to-methanol conversion on clean and defective Rh surfaces. J. Chem. Phys. 125(4), 044701 (2006)

    ADS  Google Scholar 

  34. A. Kokalj, N. Bonini, C. Sbraccia, S. de Gironcoli, S. Baroni, Engineering the reactivity of metal catalysts: a model study of methane dehydrogenation on Rh(111). J. Am. Chem. Soc. 126(51), 16732–16733 (2004)

    Google Scholar 

  35. S. Abbet, A. Sanchez, U. Heiz, W.D. Schneider, A.M. Ferrari, G. Pacchioni, N. Rosch, Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 <= n <= 30): one atom is enough! J. Am. Chem. Soc. 122(14), 3453–3457 (2000)

    Google Scholar 

  36. S. Abbet, U. Heiz, H. Hakkinen, U. Landman, CO oxidation on a single Pd atom supported on magnesia. Phys. Rev. Lett. 86(26), 5950–5953 (2001)

    ADS  Google Scholar 

  37. C.J. Zhang, P. Hu, The possibility of single C–H bond activation in CH[sub 4] on a MoO[sub 3]-supported Pt catalyst: a density functional theory study. J. Chem. Phys. 116(10), 4281–4285 (2002)

    ADS  Google Scholar 

  38. F. Esch, A. Baraldi, C. Comelli, S. Lizzit, M. Kiskinova, P.D. Cobden, B.E. Nieuwenhuys, Atomic nitrogen on steps: a fast x-ray photoelectron spectroscopy study of the NO uptake on Rh(533), Rh(311), and Rh(111). J. Chem. Phys. 110(8), 4013–4019 (1999)

    ADS  Google Scholar 

  39. A. Baraldi, S. Lizzit, F. Bondino, G. Comelli, R. Rosei, C. Sbraccia, N. Bonini, S. Baroni, A. Mikkelsen, J.N. Andersen, Thermal stability of the Rh(110) missing-row reconstruction: Combination of real-time core-level spectroscopy and ab initio modeling. Phys. Rev. B 72(7), 075417 (2005)

    ADS  Google Scholar 

  40. S.W. Lee, S. Chen, J. Suntivich, K. Sasaki, R.R. Adzic, Y. Shao-Horn, Role of surface steps of Pt nanoparticles on the electrochemical activity for oxygen reduction. J. Phys. Chem. Lett. 1, 1316–1320 (2010)

    Google Scholar 

  41. P. Jakob, M. Gsell, D. Menzel, Interactions of adsorbates with locally strained substrate lattices. J. Chem. Phys. 114(22), 10075–10085 (2001)

    ADS  Google Scholar 

  42. M. Gsell, P. Jakob, D. Menzel, Effect of substrate strain on adsorption. Science 280(5364), 717–720 (1998)

    ADS  Google Scholar 

  43. J. Wintterlin, T. Zambelli, J. Trost, J. Greeley, M. Mavrikakis, Atomic-scale evidence for an enhanced catalytic reactivity of stretched surfaces. Angew. Chem. Int. Ed. 42(25), 2850–2853 (2003)

    Google Scholar 

  44. B. Richter, H. Kuhlenbeck, H.J. Freund, P.S. Bagus, Cluster core-level binding-energy shifts: the role of lattice strain. Phys. Rev. Lett. 93(2), 026805 (2004)

    ADS  Google Scholar 

  45. C. Langhammer, V.P. Zhdanov, I. Zorić, B. Kasemo, Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. Phys. Rev. Lett. 104(13), 135502 (2010)

    ADS  Google Scholar 

  46. C.Q. Sun, Y. Shi, C.M. Li, S. Li, T.C.A. Yeung, Size-induced undercooling and overheating in phase transitions in bare and embedded clusters. Phys. Rev. B 73(7), 075408 (2006)

    ADS  Google Scholar 

  47. C.Q. Sun, Y. Wang, Y.G. Nie, B.R. Mehta, M. Khanuja, S.M. Shivaprasad, Y. Sun, J.S. Pan, L.K. Pan, Z. Sun, Interface charge polarization and quantum trapping in AgPd and CuPd bimetallic alloy catalysts. PCCP 12, 3131–3135 (2010)

    ADS  Google Scholar 

  48. C.Q. Sun, Y. Wang, Y.G. Nie, Y. Sun, J.S. Pan, L.K. Pan, Z. Sun, Adatoms-induced local bond contraction, quantum trap depression, and charge polarization at Pt and Rh surfaces. J. Chem. Phys. C 113(52), 21889–21894 (2009)

    Google Scholar 

  49. X. Zhang, J.L. Kuo, M.X. Gu, X.F. Fan, P. Bai, Q.G. Song, C.Q. Sun, Local structure relaxation, quantum trap depression, and valence charge polarization induced by the shorter-and-stronger bonds between under-coordinated atoms in gold nanostructures. Nanoscale 2(3), 412–417 (2010)

    ADS  Google Scholar 

  50. W.J. Huang, R. Sun, J. Tao, L.D. Menard, R.G. Nuzzo, J.M. Zuo, Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat. Mater. 7(4), 308–313 (2008)

    ADS  Google Scholar 

  51. J.T. Miller, A.J. Kropf, Y. Zha, J.R. Regalbuto, L. Delannoy, C. Louis, E. Bus, J.A. van Bokhoven, The effect of gold particle size on Au–Au bond length and reactivity toward oxygen in supported catalysts. J. Catal. 240(2), 222–234 (2006)

    Google Scholar 

  52. W. Li, A. Amirfazli, Superhydrophobic surfaces: adhesive strongly to water? Adv. Mater. 19(21), 3421–3422 (2007)

    Google Scholar 

  53. X.M. Li, D. Reinhoudt, M. Crego-Calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 36(8), 1350–1368 (2007)

    Google Scholar 

  54. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)

    Google Scholar 

  55. C. Lee, C.H. Choi, C.J. Kim, Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101(6), 064501 (2008)

    ADS  Google Scholar 

  56. G.P. Fang, W. Li, X.F. Wang, G.J. Qiao, Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability. Langmuir 24(20), 11651–11660 (2008)

    Google Scholar 

  57. W. Li, G.P. Fang, Y.F. Lij, G.J. Qiao, Anisotropic wetting behavior arising from superhydrophobic surfaces: parallel grooved structure. J. Phys. Chem. B 112(24), 7234–7243 (2008)

    Google Scholar 

  58. X.P. Zheng, H.P. Zhao, L.T. Gao, J.L. Liu, S.W. Yu, X.Q. Feng, Elasticity-driven droplet movement on a microbeam with gradient stiffness: a biomimetic self-propelling mechanism. J. Colloid Interface Sci. 323(1), 133–140 (2008)

    Google Scholar 

  59. E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C.D.W. Wilkinson, M.O. Riehle, Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano. Lett. 5(10), 2097–2103 (2005)

    ADS  Google Scholar 

  60. F. Mugele, J.C. Baret, Electrowetting: from basics to applications. J. Phys.-Condens. Matter 17(28), R705–R774 (2005)

    ADS  Google Scholar 

  61. X.F. Gao, L. Jiang, Water-repellent legs of water striders. Nature 432(7013), 36 (2004)

    ADS  Google Scholar 

  62. Q.S. Zheng, Y. Yu, X.Q. Feng, The role of adaptive-deformation of water strider leg in its walking on water. J. Adhes. Sci. Technol. 23(3), 493–501 (2009)

    Google Scholar 

  63. G. Caputo, R. Cingolani, P.D. Cozzoli, A. Athanassiou, Wettability conversion of colloidal TiO2 nanocrystal thin films with UV-switchable hydrophilicity. PCCP 11, 3692–3700 (2009)

    ADS  Google Scholar 

  64. R.D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 105(10), 1984–1990 (2001)

    Google Scholar 

  65. R.B. Schoch, J.Y. Han, P. Renaud, Transport phenomena in nanofluidics. Rev. Mod. Phys. 80(3), 839–883 (2008)

    ADS  Google Scholar 

  66. K.F.V. Wong, T. Kurma, Transport properties of alumina nanofluids. Nanotechnology. 19(34), 345702 (2008)

    ADS  Google Scholar 

  67. F. Baldessari, Electrokinetics in nanochannels—part I. Electric double layer overlap and channel-to-well equilibrium. J. Colloid Interface Sci. 325(2), 526–538 (2008)

    Google Scholar 

  68. J.A. Thomas, A.J.H. McGaughey, Reassessing fast water transport through carbon nanotubes. Nano. Lett. 8(9), 2788–2793 (2008)

    ADS  Google Scholar 

  69. J. Cumings, A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289(5479), 602–604 (2000)

    ADS  Google Scholar 

  70. M. Whitby, L. Cagnon, M. Thanou, N. Quirke, Enhanced fluid flow through nanoscale carbon pipes. Nano. Lett. 8(9), 2632–2637 (2008)

    ADS  Google Scholar 

  71. M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438(7064), 44 (2005)

    ADS  Google Scholar 

  72. H.G. Park, Y. Jung, Carbon nanofluidics of rapid water transport for energy applications. Chem. Soc. Rev. (2014). doi:10.1039/C1033CS60253B

  73. Q.Z. Yuan, Y.P. Zhao, Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. J. Am. Chem. Soc. 131(18), 6374 (2009)

    Google Scholar 

  74. A. Socoliuc, E. Gnecco, S. Maier, O. Pfeiffer, A. Baratoff, R. Bennewitz, E. Meyer, Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313(5784), 207–210 (2006)

    ADS  Google Scholar 

  75. E. Gnecco, S. Maier, E. Meyer, Superlubricity of dry nanocontacts. J. Phys.: Condens. Matter 20(35), 354004 (2008)

    Google Scholar 

  76. R.J. Cannara, M.J. Brukman, K. Cimatu, A.V. Sumant, S. Baldelli, R.W. Carpick, Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 318(5851), 780–783 (2007)

    ADS  Google Scholar 

  77. A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92(13), 134301 (2004)

    ADS  Google Scholar 

  78. A. Erdemir, J.M. Martin (eds.), Superlubricity (Elsevier, Amsterdam, 2007)

    Google Scholar 

  79. J.Y. Park, D.F. Ogletree, P.A. Thiel, M. Salmeron, Electronic control of friction in silicon pn junctions. Science 313(5784), 186 (2006)

    Google Scholar 

  80. G.A. Tomlinson, Philos. Mag. 7, 905 (1929)

    Google Scholar 

  81. L. Prandtl, Mind model of the kinetic theory of solid bodies. Zeitschrift Fur Angewandte Mathematik Und Mechanik 8, 85–106 (1928)

    MATH  Google Scholar 

  82. Y.F. Mo, K.T. Turner, I. Szlufarska, Friction laws at the nanoscale. Nature 457(7233), 1116–1119 (2009)

    ADS  Google Scholar 

  83. E. Kim, M.H.W. Chan, Probable observation of a supersolid helium phase. Nature 427(6971), 225–227 (2004)

    ADS  Google Scholar 

  84. S. Balibar, F. Caupin, Supersolidity and disorder. J. Phys.-Condens. Matter 20(17), 173201 (2008)

    ADS  Google Scholar 

  85. B. Hunt, E. Pratt, V. Gadagkar, M. Yamashita, A.V. Balatsky, J.C. Davis, Evidence for a superglass state in solid 4He. Science 324, 632–636 (2009)

    ADS  Google Scholar 

  86. J. Day, J. Beamish, Low-temperature shear modulus changes in solid He-4 and connection to supersolidity. Nature 450(7171), 853–856 (2007)

    ADS  Google Scholar 

  87. P.W. Anderson, A gross-Pitaevskii treatment for supersolid helium. Science 324, 631–632 (2009)

    ADS  Google Scholar 

  88. L. Pollet, M. Boninsegni, A.B. Kuklov, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Local stress and superfluid properties of solid He-4. Phys. Rev. Lett. 101(9), 097202 (2008)

    ADS  Google Scholar 

  89. S. Sasaki, R. Ishiguro, F. Caupin, H.J. Maris, S. Balibar, Superfluidity of grain boundaries and supersolid behavior. Science 313(5790), 1098–1100 (2006)

    ADS  Google Scholar 

  90. J. Saunders, A glassy state of supersolid helium. Science 324, 601–602 (2009)

    Google Scholar 

  91. L. Pollet, M. Boninsegni, A.B. Kuklov, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Local stress and superfluid properties of solid He-4. Phys. Rev. Lett. 101(9), 097202 (2008)

    ADS  Google Scholar 

  92. N.K. Adam, Use of the term ‘Young’s equation’ for contact angles. Nature 180, 809–810 (1957)

    ADS  Google Scholar 

  93. G. Whyman, E. Bormashenko, T. Stein, The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450(4–6), 355–359 (2008)

    ADS  Google Scholar 

  94. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 0546–0550 (1944)

    Google Scholar 

  95. G.A. Tomlinson, Molecular cohesion. Philos. Maga. 6(37), 695 (1928)

    Google Scholar 

  96. A. Lafuma, D. Quere, Superhydrophobic states. Nat. Mater. 2, 457–460 (2003)

    ADS  Google Scholar 

  97. F. Matsui, T. Matsushita, Y. Kato, M. Hashimoto, K. Inaji, F.Z. Guo, H. Daimon, Atomic-layer resolved magnetic and electronic structure analysis of Ni thin film on a Cu(001) surface by diffraction spectroscopy. Phys. Rev. Lett. 100(20), 207201 (2008)

    ADS  Google Scholar 

  98. Z. Abbas, C. Labbez, S. Nordholm, E. Ahlberg, Size-dependent surface charging of nanoparticles. J. Chem. Phys. C 112(15), 5715–5723 (2008)

    Google Scholar 

  99. B. Zheng, P. Hermet, L. Henrard, Scanning tunneling microscopy simulations of nitrogen- and boron-doped graphene and single-walled carbon nanotubes. ACS Nano. 4(7), 4165–4173 (2010)

    Google Scholar 

  100. M. Zhao, W.T. Zheng, J.C. Li, Z. Wen, M.X. Gu, C.Q. Sun, Atomistic origin, temperature dependence, and responsibilities of surface energetics: an extended broken-bond rule. Phys. Rev. B 75(8), 085427 (2007)

    ADS  Google Scholar 

  101. C.Q. Sun, Surface and nanosolid core-level shift: impact of atomic coordination-number imperfection. Phys. Rev. B 69(4), 045105 (2004)

    ADS  Google Scholar 

  102. M. Kasuya, M. Hino, H. Yamada, M. Mizukami, H. Mori, S. Kajita, T. Ohmori, A. Suzuki, K. Kurihara, Characterization of water confined between silica surfaces using the resonance shear measurement. J. Phys. Chem. C 117(26), 13540–13546 (2013)

    Google Scholar 

  103. A. Uysal, M. Chu, B. Stripe, A. Timalsina, S. Chattopadhyay, C.M. Schlepütz, T.J. Marks, P. Dutta, What x rays can tell us about the interfacial profile of water near hydrophobic surfaces. Phys. Rev. B 88(3), 035431 (2013)

    ADS  Google Scholar 

  104. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater. Sci. 48(6), 521–685 (2003)

    Google Scholar 

  105. Y.Y. Tay et al., Size dependence of Zn 2p 3/2 binding energy in nanocrystalline ZnO. Appl. Phys. Lett. 88(17), 173118 (2006)

    Google Scholar 

  106. Y. Qin, X.D. Wang, Z.L. Wang, Microfibre-nanowire hybrid structure for energy scavenging. Nature. 451(7180), 809–813 (2008)

    Google Scholar 

  107. R.S. Yang et al., Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4(1), 34–39 (2009)

    Google Scholar 

  108. L. Gu et al., Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett. 13(1), 91–94 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Functionalities of Non-Bonding Electrons: Size Emergence. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_20

Download citation

Publish with us

Policies and ethics