Skip to main content

Phenomenology and Scaling Theories

  • Chapter
  • First Online:
  • 984 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The statistics of the velocity and temperature differences, between measurements taken at two points separated by a distance \(l\), can reveal the structure of turbulence. These structure functions often exhibit power laws or scaling laws in \(l\). We introduce the important concept of energy cascade in turbulent flows and the different theories for the scaling behavior of the velocity and temperature fluctuations. We start with the scaling theory for non-buoyant turbulent flows and then discuss how the presence of buoyancy would affect and modify the scaling behavior. A crossover between the two types of scaling behavior is expected to occur at a length scale, the Bolgiano length, above which buoyancy is significant. Furthermore, there are corrections to these scaling theories due to the intermittent nature of turbulent fluctuations, and we discuss the idea of refined similarity hypothesis used to account for these corrections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L.F. Richardson, Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  2. A.N. Kolmogorov, The local structure of turbulence in imcompressible viscous fluid for very large Reynolds numbers. C. R. (Dokl.) Acad. Sci. SSSR 30, 301–305 (1941). Reprinted: (1991) Proc. R. Soc. Lond. Ser. A 434, 9–13

    Google Scholar 

  3. A.N. Kolmogorov, Dissipation of energy in the locally isotropic turbulence. C. R. (Dokl.) Acad. Sci. SSSR 32:16–18 (1941). Reprinted: (1991) Proc. R. Soc. Lond. Ser. A 434, 15–17

    Google Scholar 

  4. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987)

    MATH  Google Scholar 

  5. U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  6. V. Yakhot, 4/5 Kolmogorov law for statistically stationary turbulence: application to High-Rayleigh-Number Bénard convection. Phys. Rev. Lett. 69, 769–771 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. A.M. Obukhov, The structure of the temperature field in a turbulent flow. Izv. Akad. Nauk. SSSR. Ser. Geogr. Geophys. 13, 58–69 (1949)

    Google Scholar 

  8. S. Corrsin, On the spectrum of isotropic temperature fluctuations in isotropic turbulence. J. Appl. Phys. 22, 469–473 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  9. Z. Warhaft, Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203–240 (2000)

    Article  MathSciNet  Google Scholar 

  10. I. Procaccia, R. Zeitak, Scaling exponents in nonisotropic convective turbulence. Phys. Rev. Lett. 62, 2128–2131 (1989)

    Google Scholar 

  11. I. Procaccia, R. Zeitak, Scaling exponents in thermally driven turbulence. Phys. Rev. A 42, 821–830 (1990)

    Google Scholar 

  12. V.S. L’vov, Spectra of velocity and temperature fluctuations with constant entropy flux of fully developed free-convective turbulence. Phys. Rev. Lett. 67, 687–690 (1991)

    Article  Google Scholar 

  13. S. Grossmann, V.S. L’vov, Crossover of spectral scaling in thermal turbulence. Phys. Rev. E 47, 4161–4168 (1993)

    Article  Google Scholar 

  14. R. Bolgiano, Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64, 2226–2229 (1959)

    Article  Google Scholar 

  15. A.M. Obukhov, The influence of Archimedean forces on the structure of the temperature field in a turbulent flow. Dokl. Akad. Nauk. SSR 125, 1246–1248 (1959)

    Google Scholar 

  16. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (MIT Press, Cambridge, 1975)

    Google Scholar 

  17. E. Calzavarini, F. Toschi, R. Tripiccione, Evidences of Bolgiano-Obhukhov scaling in three-dimensional Rayleigh-Bénard convection. Phys. Rev. E 66, 016304 (2002)

    Article  Google Scholar 

  18. A.N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. A.M. Obukhov, J. Fluid Mech. 13, 77 (1962)

    Article  MathSciNet  Google Scholar 

  20. A. Praskovsky, E. Praskovskaya, T. Horst, Further experimental support for the Kolmogorov refined similarity hypothesis. Phys. Fluids 9, 2465–2467 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. L.-P. Wang, S. Chen, J.G. Brasseur, J.C. Wyngaard, Examination of hypothesis in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field. J. Fluid Mech. 309, 113–156 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Stolovitzky, P. Kailasnath, K.R. Sreenivasan, Refined similarity hypotheses for passive scalars mixed by turbulence. J. Fluid Mech. 297, 275–291 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Zhu, R.A. Antonia, I. Hosokawa, Refined similarity hypothesis for turbulent velocity and temperature fields. Phys. Fluids 7, 1637–1648 (1995)

    Article  Google Scholar 

  24. E.S.C. Ching, K.L. Chau, Conditional statistics of temperature fluctuations in turbulent convection. Phys. Rev. E 63, 047303 (2001)

    Article  Google Scholar 

  25. E.S.C. Ching, W.C. Cheng, Anomalous scaling and refined similarity of an active scalar in a shell model of homogeneous turbulent convection. Phys. Rev. E 77, 015303(R) (2008)

    Google Scholar 

  26. G. Ruiz-Chavarria, C. Baudet, S. Ciliberto, Scaling laws and dissipation scale of a passive scalar in fully developed turbulence. Phys. D 99, 369–380 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily S. C. Ching .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Ching, E.S.C. (2014). Phenomenology and Scaling Theories. In: Statistics and Scaling in Turbulent Rayleigh-Bénard Convection. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4560-23-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-23-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4560-22-1

  • Online ISBN: 978-981-4560-23-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics