Advertisement

All-Optical Frequency Shifting

Chapter
  • 1.3k Downloads
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)

Abstract

This chapter provides a theoretical model for pulse propagation inside an SOI waveguide. The four-wave mixing (FWM) process in SOI waveguides is discussed with an emphasis on the effects of two-photon absorption and the consequent free-carrier effects. All-optical wavelength conversion and optical signal processing along with requisite devices are illustrated with examples exclusively.

Keywords

Frequency shifting All-optical wavelength conversion 

Abbreviations

SOI

Silicon on insulator

FWM

Four-wave mixing

WDM

Wavelength division multiplexing

DWDM

Dense wavelength division multiplexing

OTDM

Optical time division multiplexing

MZ

Mech-Zehnder

GVD

Group velocity dispersion

OXC

Optical cross-connect

CW

Continuous wave

MEMS

Micro-electromechanical system

TPA

Two-photon absorption

FCA

Free carrier absorption

SPM

Self-phase modulation

References

  1. 1.
    Claps R, Raghunathan V, Dimitropoulos D, Jalali B (2003) Anti-stokes Raman conversion in silicon waveguides. Opt Express 11:2862–2872CrossRefGoogle Scholar
  2. 2.
    Raghunathan V, Claps R, Dimitropoulos D, Jalali B (2004) Wavelength conversion in silicon using Raman induced four-wave mixing. App Phys Letts 85:34–36CrossRefGoogle Scholar
  3. 3.
    Fukuda H, Yamada K, Shoji T et al (2005) Four-wave mixing in silicon, wire waveguides. Opt Express 13:4629–4637CrossRefGoogle Scholar
  4. 4.
    Hochberg M, Baehr-Jones T (2008) US20080002992Google Scholar
  5. 5.
    Raghunathan V, Dimitropoulos D, Claps R, Jalali B (2003) Wavelength conversion in silicon waveguides using parametric Raman coupling. Opt Express 11:2862–2872CrossRefGoogle Scholar
  6. 6.
    Rong H, Paniccia MJ (2007) US007256929Google Scholar
  7. 7.
    Foster MA, Gaeta AL, Lipson M, Sharping JE, Turner A (2009) US20090060527Google Scholar
  8. 8.
    Rong H, Xu S, Ayotte S, Cohen O, Raday O, Paniccia M (2008) Silicon based chip-scale nonlinear optical devices: laser, amplifier, and wavelength converter. LEOS winter topical meeting, Sorrento, ItalyGoogle Scholar
  9. 9.
    Hansryd J, Andrekson A, Westlund M, Li J, Hedekvist P (2002) Fiber-based optical parametric amplifiers and their applications. Quantum Electron 8:506–520Google Scholar
  10. 10.
    Foster MA, Sharping JE, Gaeta AL, Turner AC, Schmidt BS, Lipson M (2006) Broad-bandwidth optical gain and efficient wavelength conversion in silicon waveguides. Conference on laser and electro-optics, Long Beach, CanadaGoogle Scholar
  11. 11.
    Lee BG, Biberman A, Amy C et al (2009) Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides. Photonics Technol Lett 21:182–184CrossRefGoogle Scholar
  12. 12.
    Lee BG, Biberman A, Amy C et al (2009) 160-Gb/s broadband wavelength conversion on chip using dispersion-engineered silicon waveguides. Conference on laser and electro-optics, Baltimore, USAGoogle Scholar
  13. 13.
    Duan GH (1995) In: Agrawal GP (ed) Semiconductor lasers: past, present, and future. AIP Press, WoodburyGoogle Scholar
  14. 14.
    Claps R, Raghunathan V, Dimitropoulos D, Jalali B (2004) Influence of nonlinear absorption on Raman amplification in silicon waveguides. Opt Express 12:2774–2780CrossRefGoogle Scholar
  15. 15.
    Xia F, Sekaric L, Vlasov Y (2007) Ultra compact optical buffers on a silicon chip. Nat Photonics 1:65–71CrossRefGoogle Scholar
  16. 16.
    Vos KD, Bartolozzi I, Schacht E, Bienstman P, Baets R (2007) Silicon-on-insulator microring resonator for sensitive and label-free bio-sensing. Opt Express 15:7610–7615CrossRefGoogle Scholar
  17. 17.
    Jones BT, Michael HJ (2009) WO2009111610Google Scholar
  18. 18.
    Loncar M, Doll T, Vuckovic J, Scherer A (2000) Design and fabrication of silicon photonic crystal optical waveguides. Lightwave Technol 18:1402–1411CrossRefGoogle Scholar
  19. 19.
    Lin MS, Chou CM (2009) US7582966Google Scholar
  20. 20.
    Almeida VR, Barrios CA, Panepucci RR (2004) All-optical switching on a silicon chip. Opt Lett 29:2867–2869CrossRefGoogle Scholar
  21. 21.
    Dinu M, Quochi F, Garcia H (2003) Third-order nonlinearities in silicon at telecom wavelengths. App Phys Letts 82:2954–2956CrossRefGoogle Scholar
  22. 22.
    Soref RA, Bennett BR (1987) Electro-optical effects in silicon. Quantum Electron 23:123–129CrossRefGoogle Scholar
  23. 23.
    Alexandre B, Kamins TI (2009) US20090190875Google Scholar
  24. 24.
    Soref RA, Bennett BR (1987) Electro-optical effects in silicon. Quantum Electron 23:123–129CrossRefGoogle Scholar
  25. 25.
    Arawal GP (2008) Fiber-optic communication systems, 3rd edn. Academic Press, BostonGoogle Scholar
  26. 26.
    Howerton MM, Moeller RP, Greenlatt AS, Krahenbuhl R (2000) Fully packaged, broad-band LiNbO3 modulator with low drive voltage. IEEE Photon Technol Lett 12:792–794Google Scholar
  27. 27.
    Harry Dutton (1998) Understanding optical communications. IBM CorporationGoogle Scholar
  28. 28.
    Alexandre B, Kamins TI (2009) US20090190875Google Scholar
  29. 29.
    Park JW, Kim, Kim G, Kim HS, Mheen B (2010) US7646942Google Scholar
  30. 30.
    Yoo SJB (2009) Future prospects of silicon photonics in next generation communication and computing systems. Elect letters 45:584–588CrossRefGoogle Scholar
  31. 31.
    Reanud M, Bachmann M, Ermann M (1996) Semiconductor optical space switches. IEEE J Sel Topics Quantum Electron 2:277–288Google Scholar
  32. 32.
    Mutafungwa E (2001) An improved all-fiber cross-connect node for future optical transport networks. Opt Fiber Technol 7:236–253Google Scholar
  33. 33.
    Qianfan Xu, Michal Lipson (2007) All-optical logic based on silicon micro-ring resonators. Optics Express 15(3):924–929Google Scholar
  34. 34.
    Först M, Niehusmann J, Plötzing T et al (2007) High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators. Opt Letts 32:2046–2048CrossRefGoogle Scholar
  35. 35.
    Maki JJ (2009) US20090310910Google Scholar
  36. 36.
    Kim KH, Choi YG, Lee HK (2003) US6538804Google Scholar
  37. 37.
    Hammond RB, Silver RN (1980) Temperature dependence of the exciton lifetime in high-purity silicon. App Phys Letts 36:68–71CrossRefGoogle Scholar
  38. 38.
    Jalali B, Raghunathan V, Dimitropoulos D, Boyraz O (2006) Raman based silicon photonics. Quantum Electron 12:412–421Google Scholar
  39. 39.
    Rong HS, Jones R, Liu AS et al (2005) A continuous-wave Raman silicon laser. Nature 433:725–728CrossRefGoogle Scholar
  40. 40.
    Nicolaescu R, Paniccia MJ (2006) US7046714Google Scholar
  41. 41.
    Liu A, Paniccia MJ, Rong H (2007) US7266258Google Scholar
  42. 42.
    Wei WC, Xiaodong Y (2006) WO2006014346Google Scholar
  43. 43.
    Wei WC, Xiaodong Y (2009) US7532656Google Scholar
  44. 44.
    Mark W, Piede D, Prakash G (2009) US20090135861Google Scholar
  45. 45.
    Graham M, Martin AMS, Peter D, James P, John WM (2008) WO2008025076Google Scholar
  46. 46.
    Masini G, Sahni S, Capellini G et al (2008) Ge photo-detectors integrated in CMOS photonic circuits. Photonics silicon III, San Jose, USAGoogle Scholar
  47. 47.
    Kang YM, Liu HD, Morse M et al (2009) Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nat Photonics 3:59–63CrossRefGoogle Scholar
  48. 48.
    Dehlinger G, Sharee J, McNab, Vlasov YA, Xia F (2009) US7515793Google Scholar
  49. 49.
    Lawrence CG, Thierry JP, Rattier MJ, Capellini G (2009) US7616904Google Scholar
  50. 50.
    Michael JH, Baehr-Jones T, Scherer A (2009) US20090052830Google Scholar
  51. 51.
    Yamada K, Tsuchizawa T, Watanabe T et al (2003) Silicon photonics based on photonic wire waveguides. Opt Letts 28:1663–1664CrossRefGoogle Scholar
  52. 52.
    Fukazawa T, Fumiaki OHNO, Toshihiko BABA (2004) Very compact arrayed-waveguide-grating de-multiplexer using Si photonic wire waveguides. App Phys 43:673–675Google Scholar
  53. 53.
    Yamada K, Tsuchizawa T, Watanabe T et al (2009) Silicon photonics based on photonic wire waveguides. OECC 10:1–2Google Scholar
  54. 54.
    Khurgin JB (2005) Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. JOSAB 22:1062–1074CrossRefGoogle Scholar
  55. 55.
    Poon JK, Zhu L, DeRose GA, Yariv A (2006) Transmission and group delay of microring coupled-resonator optical waveguides. Opt Letts 31:456–458CrossRefGoogle Scholar
  56. 56.
    Luo X, Poon AW (2008) Double-notch-shaped microdisk resonator devices with gapless coupling on silicon chip. Chin Opt letts 7:296–298CrossRefGoogle Scholar
  57. 57.
    Yamada K, Tsuchizawa T, Watanabe T, Fukuda H, Shinojima M, Itabashi SI (2007) Applications of low-loss silicon photonic wire waveguides with carrier injection structures. In: 4th international conference on group IV photonics, Tokyo, JapanGoogle Scholar
  58. 58.
    Poon AW, Xu F (2008) Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings. Opt Express 16:8649–8657CrossRefGoogle Scholar
  59. 59.
    David P, Bipin D, Kalpendu S, John F, Harvey W, Margret G (2006) US20060126993Google Scholar
  60. 60.
    Ito C, Monfils I, Cartledge J, Kingston Ont (2006) All-optical 3R regeneration using higher-order four-wave mixing in a highly nonlinear fiber with a clock-modulated optical pump signal. LEOS 223–224Google Scholar
  61. 61.
    Boyraz O (2008) Nanoscale signal regeneration. Nat Photonics 2:12–13CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.HITEC UniversityTaxilaPakistan
  2. 2.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.HITEC UniversityTaxilaPakistan

Personalised recommendations