Advertisement

Supercontinuum Generation by Nonlinear Optics

Chapter
  • 1.3k Downloads
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)

Abstract

Supercontinuum (SC) sources are replacement of white light sources. Supercontinuum generation in optical fiber, pumped by different sources, which include pumping with femto second (fs), picoseconds (ps) pulse sources, and continuous sources are reviewed in this chapter. The nonlinear Schrödinger equation is used to discuss the spectral broadening or SC generation. Recently, SC generation has been proved very effective and some of its applications are very promising for future ultra-high bandwidth networks.

Keywords

Supercontinuum Spectral broadening Nonlinear Schrödinger equation White light Pulse compression Spectroscopy Optical coherence tomography 

Abbreviations

fs

Femto second

ps

Picoseconds

SC

Supercontinuum

FWM

Four-wave mixing

SOI

Silicon-on-insulator

XPM

Cross-phase modulation

References

  1. 1.
    Dudley JM, Genty G, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Phys Rev Lett 24:584–587Google Scholar
  2. 2.
    Agrawal GP (2011) Non linear fiber optics: its history and recent progress [invited]. J Opt Soc Am B Opt Phys 28(12):A1CrossRefGoogle Scholar
  3. 3.
    Alfano RR, Shapiro SL (1970) Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys Rev Lett 24:592–594CrossRefGoogle Scholar
  4. 4.
    US army armament command Faran Lford, Arsenal Philadelphia Pennsylvania 19137 Self phase modulation: a reviews (1975)Google Scholar
  5. 5.
    Husakou AV, Herrmann J (2001) Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. J Opt Soc Am B 19:2171–2182CrossRefGoogle Scholar
  6. 6.
    Li S, Ruffin AB, Kuksenkov DV, Li M-J, Nolan DA (2007) Supercontinuum generation in optical fibers: invited paper. Proc of SPIE 6781:678105CrossRefGoogle Scholar
  7. 7.
    Manassah JT, Ho PP, Katz A, Alfano RR (1984) Ultrafast supercontinuum laser source. Photonics Spectra 18:53–59Google Scholar
  8. 8.
    Bondarenko NG, Eremina IV, Talanov VI (1970) Broadening of spectrum in self-focusing of light in crystals. Sov J Exp Theoret Phys Lett 12:85–87Google Scholar
  9. 9.
    Stoicheff BP (1963) Characteristics of stimulated Raman radiation generated by coherent light. Phys Lett 7:186–188CrossRefGoogle Scholar
  10. 10.
    Nishizawa N (2009) Octave spanning high quality super continuum generation using ultra short pulse fiber laser. 978-1-4244-2611 IEEEGoogle Scholar
  11. 11.
    Herrmann J, Griebner U, Zhavoronkov N, Husakou A, Nickel D, Knight JC, Wadsworth WJ, Russell PStJ, Korn G (2002) Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Nature 424:847–851Google Scholar
  12. 12.
    Gonzalez-Herraez M, Martin-Lopez S, Corredera P, Hernanz ML, Horche PR (2003) Supercontinuum generation using a continuous-wave Raman fiber laser. Opt Commun 226:323–328CrossRefGoogle Scholar
  13. 13.
    Foster MA, Gaeta AL, Dudley JM, Cao Q, Lee D, Trebino R (2005) Supercontinuum generation and pulse compression in sub-wavelength-sized waveguides. Conference on Lasers and Electro-Optics (CLEO), pp 1261–1263Google Scholar
  14. 14.
    Chow KK, Takushima Y, Mizuno Y (2006) High average power super-continuum generation using a 1-μm ASE noise source. Optical Society of AmericaGoogle Scholar
  15. 15.
    Dou L, Gao Y, Xu A, Tang M, Shum P (2002) Super-continuum generation using noise-like pulses from a large normal dispersion passively mode locking fiber laser. IEEE 92–93Google Scholar
  16. 16.
    Dekker S, Xiong C, Magi E, Judge AC, Sanghera JS, Shaw LB, Aggarwal ID, Moss DJ, Eggleton BJ (2010) Broadband low power super-continuum generation in As2S3 chalcogenide glass fiber nanotapers. Optical Society of AmericaGoogle Scholar
  17. 17.
    Snyder AW, Love JD (2000) Optical waveguide theory. Kluwer Academic, DordrechtGoogle Scholar
  18. 18.
    Birks TA, Knight JC, St P, Russell J (1997) Endlessly single-mode photonic crystal fiber. Opt Lett 22:961–963CrossRefGoogle Scholar
  19. 19.
    Poli F, Cucinotta A, Selleri S (2007) Photonic crystal fibers. Springer, BerlinGoogle Scholar
  20. 20.
    Agrawal GP (2000) Non-linear fiber optics. 4th edn. Springer, Berlin, pp 471–480Google Scholar
  21. 21.
    Dudley JM, Genty G, Eggleton BJ (2008) Harnessing and control of optical rogue waves in supercontinuum generationGoogle Scholar
  22. 22.
    Chen HW, Chen SP, Hou J (2011) 7 W all-fiber supercontinuum source. Laser Phys 21(1):191–193 ISSN 1054_660XCrossRefGoogle Scholar
  23. 23.
    Walewski JW, Filipa JA, Hagen CL, Sanders ST (2006) Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua. Appl Phys B 83:75–79CrossRefGoogle Scholar
  24. 24.
    Nishizawa N, Hori M (2007) Super continuum generation using ps high energy erdoped fiber laser at 1.55 μm. The 7th pacific rim conference on lasers and electro-optics (CLEO/Pacific Rim 2007)Google Scholar
  25. 25.
    Travers JC, Rulkov AB, Cumberland BA, Popov SV, Taylor JR (2008) Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser. Optical Society of AmericaGoogle Scholar
  26. 26.
    Kobtsev SM, Smirnov SV (2005) Modeling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump. Opt Express 13(18):6912–6918 5 Sept 2005CrossRefGoogle Scholar
  27. 27.
    Kachalovaa NM, Voitsekhovich VS, Borodina AM, Khomenko VV, Pentegov SY (2011) Femtosecond supercontinuum characteristics control. Opt Spectrosc 111(4):593–598 ISSN 0030400XCrossRefGoogle Scholar
  28. 28.
    Kibler B, Fischer R, Genty G, Neshev DN, Dudley JM (2008) Simultaneous fs pulse spectral broadening and third harmonic generation in highly nonlinear fiber: experiments and simulations. Appl Phys B 91:349–352CrossRefGoogle Scholar
  29. 29.
    Kobtsev SM, Kukarin SV (2009) Spectral broadening of femtosecond pulses in an nonlinear optical fiber amplifier. Opt Spectrosc 107(3):344–346 ISSN 0030_400XCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.HITEC UniversityTaxilaPakistan
  2. 2.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.HITEC UniversityTaxilaPakistan

Personalised recommendations