Advancements in Silicon Photonics

Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)


This chapter focuses on the gradual and time-needed advancements made in the field of photonics. It also highlights the evolution taken place in the devices which are being used and prepared for future trends as well. The traditional and nontraditional motivations regarding selection of silicon as the enabling material for the usefulness of photonics and SOI waveguides and their types are also presented with great emphasis and depth.


Silicon photonics Silicon-on-insulator waveguides Waveguides for silicon photonics 



Silicon on insulator


Complementary metal–oxide–semiconductor


Photonic crystal


Photonic integrated circuit


Nonlinear optics


Ultra-large-scale integrated


Integrated circuit


Micro-electro-mechanical structures


Micro-opto-electro-mechanical structures


  1. 1.
    Lipson M (2005) Guiding, modulating, and emitting light on silicon—challenges and opportunities. Lightwave Technol 23:4222–4238CrossRefGoogle Scholar
  2. 2.
    Joannopoulos JD, Meade RD, Winn JN, Johnson SG (2008) Photonic crystals: molding the flow of light: one dimensional photonic crystals, 2nd edn. pp 44–104Google Scholar
  3. 3.
    Reed GT, Mashanovich GZ, Headley WR et al (2006) Issues associated with polarization independence in silicon photonics. Quantum Electron 12:1335–1344Google Scholar
  4. 4.
    Almeida VR, Xu Q, Barrios CA, Lipson M (2004) Guiding and confining light in void nanostructure. Opt Letts 29:1209–1211CrossRefGoogle Scholar
  5. 5.
    Xie M, Yuan Z, Qian B, Pavesi L (2009) Silicon nanocrystals to enable silicon photonics. Opt Letts 7:319–324Google Scholar
  6. 6.
    Tsuchizawa T, Yamada K, Fukuda H et al (2005) Microphotonic devices based on silicon microfabrication technology. Quantum Electron 11:232–240Google Scholar
  7. 7.
    McNab S, Moll N, Vlasov Y (2003) Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt Express 11:2927–2939CrossRefGoogle Scholar
  8. 8.
    Roelkens G, Dumon P, Bogaerts W, Thourhout DV, Baets R (2005) Efficient fiber to SOI photonic wire coupler fabricated using standard CMOS technology. In: LEOS 18th Annual Meeting, Sydney, Australia, Oct 2005Google Scholar
  9. 9.
    Taillaert D, Bogaerts W, Bienstman P et al (2002) An out of plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. Quantum Electron 38:949–955CrossRefGoogle Scholar
  10. 10.
    Narasimha A (2004) Low dispersion, high spectral efficiency, RF photonic transmission systems and low loss grating couplers for silicon-on-insulator nanophotonic integrated circuits. PhD dissertation, University of California Los Angeles, 2004Google Scholar
  11. 11.
    Chen X, li C, Tsang HK (2009) US20090290837Google Scholar
  12. 12.
    Scheerlinck, Thourhout V, Beats R (2009) WO2009003969Google Scholar
  13. 13.
    Lu Z, Prather DW (2008) US007428358Google Scholar
  14. 14.
    Liu A (2010) US7643710Google Scholar
  15. 15.
    Tomasi W (2001) Advanced Electronic communication system, 5th edn, Prentice HallGoogle Scholar
  16. 16.
    Inoue K (1992) Four-wave mixing in an optical fiber in the zero-dispersion wavelength region. J Lightwave Technol 10:1553–1561CrossRefGoogle Scholar
  17. 17.
    Slusher RE, Hollberg LW, Yurke B, Mertz JC, Valley JF (1985) Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys Rev Lett 55:2409–2412CrossRefGoogle Scholar
  18. 18.
    Ranka JK, Windeler RS, Stentz AJ (2000) Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt Lett 25:25–27CrossRefGoogle Scholar
  19. 19.
    Dudley JM, Genty G, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78:1135–1184CrossRefGoogle Scholar
  20. 20.
    Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77:633–673CrossRefGoogle Scholar
  21. 21.
    Gisela Eckhardt RW, Hellwarth FJ, McClung SE, Schwarz DW, Woodbury EJ (1962) Stimulated Raman scattering from organic liquids. Phys Rev Lett 9:455–457CrossRefGoogle Scholar
  22. 22.
    Agrawal GP (2001) Nonlinear fiber optics. Academic Press, LondonGoogle Scholar
  23. 23.
    Boyd RW, Gauthier DJ (2002) Slow and fast light. Prog Opt 43:497–530CrossRefGoogle Scholar
  24. 24.
    Lockwood D, Pavesi L (2004) Silicon photonics II: topics in applied physics, vol 119. Springer, BerlinGoogle Scholar
  25. 25.
    LipsonML (2005) J Lightwave Technol. Guiding, Modulating and Emitting Light on Silicon- Challenges and Opportunities 23:4222–4238Google Scholar
  26. 26.
    Soref RA, Lorenzo JP (1985) Single-crystal silicon-A new material for 1.3 and 1.6 μm integrated-optical components. Electron Lett 21:953–954CrossRefGoogle Scholar
  27. 27.
    Soref RA, Lorenzo JP (1986) All-silicon active and passive guided-wave components for λ = 1:3 and 1:6 μm. IEEE J Quant Electron 22:873–879CrossRefGoogle Scholar
  28. 28.
    Pavesi L, Lockwood D (2004) Silicon photonics: topics in applied physics, vol 94. Springer, BerlinGoogle Scholar
  29. 29.
    Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048CrossRefGoogle Scholar
  30. 30.
    Soref RA (1993) Silicon-based optoelectronic. Proc IEEE 81:1687–1706CrossRefGoogle Scholar
  31. 31.
    Bisi O, Campisano SU, Pavesi L, Priolo F (1999) Silicon based microphotonics: from basics to applications. In: Proceedings of E. Fermi Schools: course CXLI, Amsterdam, The NetherlandsGoogle Scholar
  32. 32.
    Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F (2000) Optical gain in Si nanocrystals. Nature 408:440–444CrossRefGoogle Scholar
  33. 33.
    Nayfeh MH, Barry N, Therrien J, Akcakir O, Gratton E, Belomoin G (2001) Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles. Appl Phys Lett 78:1131–1133CrossRefGoogle Scholar
  34. 34.
    Boyraz O, Jalali B (2004) Demonstration of a silicon Raman laser. Opt Express 12:5269–5273CrossRefGoogle Scholar
  35. 35.
    Chen M, Yen J, Li J, Chang J, Tsai S, Tsai C (2004) Stimulated emission in a nanostructured silicon pn junction diode using current injection. Appl Phys Lett 84:2163–2165CrossRefGoogle Scholar
  36. 36.
    Lee KK, Lim DR, Luan H-C, Agarwal A, Foresi J, Kimerling LC (2000) Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model. Appl Phys Lett 77:1617–1619CrossRefGoogle Scholar
  37. 37.
    Loncar M, Doll T, Vuckovic J, Scherer A (2000) Design and fabrication of silicon photonic crystal optical waveguides. J Lightwave Technol 18:1402–1411CrossRefGoogle Scholar
  38. 38.
    Han H-S, Seo S-Y, Shin JH (2001) Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide. J Appl Phys 27:4568–4570Google Scholar
  39. 39.
    Vlasov YA, O’Boyle M, Hamann HF, McNab SJ (2005) Active control of slow light on a chip with photonic crystal waveguides. Nature 438:65–69CrossRefGoogle Scholar
  40. 40.
    Png CE, Reed GT, Atta RMH, Ensell GJ, Evans AGR (2003) Development of small silicon modulators in silicon-on-insulator (SOI). Proc SPIE 4997:190–197CrossRefGoogle Scholar
  41. 41.
    Kuo Y-H, Lee Y-K, Ge Y, Ren S, Roth JE, Kamins TI, Miller DAB, Harris JS (2005) Strong quantum-confined stark effect in germanium quantum-well structures on silicon. Nature 437:1334–1336CrossRefGoogle Scholar
  42. 42.
    Akahane Y, Asano T, Song BS, Noda S (2003) High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425:944–947CrossRefGoogle Scholar
  43. 43.
    Xu Q, Schmidt B, Pradhan S, Lipson M (2005) Micrometre-scale silicon electro-optic modulator. Nature 435:325–327CrossRefGoogle Scholar
  44. 44.
    Song BS, Noda S, Asano T, Akahane Y (2005) Ultra-high-Q photonic double-heterostructure nanocavity. Nat Mater 4:207–210CrossRefGoogle Scholar
  45. 45.
    Michel J, Liu JF, Giziewicz W, Pan D, Wada K, Cannon DD, Jongthammanurak S, Danielson DT, Kimerling LC, Chen J, Ilday FO, Kartner FX, Yasaitis J (2005) High performance Ge p-i-n photodetectors on Si. In: Proceedings of group IV photon conference, pp 177–179Google Scholar
  46. 46.
    Jalali B (2006) Silicon photonics. J Lightwave Technol 24(12):4600–4615CrossRefGoogle Scholar
  47. 47.
    Soref RA (2006) The past, present, and future of silicon photonics. IEEE J Sel Topics Quantum Electron 12:1678CrossRefGoogle Scholar
  48. 48.
    Castagna ME, Coffa S, Monaco M, Muscara A, Caristia L, Lorenti S, Messina A (2003) High efficiency light emitting devices in silicon. Mater Sci Eng B 83:105Google Scholar
  49. 49.
    McNab S, Moll N, Vlasov Y (2003) Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt Express 11:2927–2939CrossRefGoogle Scholar
  50. 50.
    Koester SJ, Schaub JD, Dehlinger G, Chu JO, Ouyang QC, Grill A (2004) High-efficiency, Ge-on-SOI lateral PIN photodiodes with 29 GHz bandwidth. In: Proceedings of device research conferenceGoogle Scholar
  51. 51.
    Liu A, Jones R, Liao L, Samara Rubio D, Rubin D, Cohen O, Nicolaescu R, Paniccia M (2004) A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427:615–618CrossRefGoogle Scholar
  52. 52.
    Raghunathan V, Claps R, Dimitropoulos D, Jalali B (2004) Wavelength conversion in silicon using Raman induced four-wave mixing. Appl Phys Lett 85:34–36CrossRefGoogle Scholar
  53. 53.
    Almeida VR, Barrios CA, Panepucci RR, Lipson M (2004) All optical control of light on a silicon chip. Nature 431:1081–1084CrossRefGoogle Scholar
  54. 54.
    Boyraz O, Koonath P, Raghunathan V, Jalali B (2004) All optical switching and continuum generation in silicon waveguides. Opt Express 12:4094–4102CrossRefGoogle Scholar
  55. 55.
    Rong H, Liu A, Jones R, Cohen O, Hak D, Nicolasecu R, Fang A, Paniccia M (2005) An all-silicon Raman laser. Nature 435:292–294CrossRefGoogle Scholar
  56. 56.
    Liao L, Samara-Rubio D, Morse M, Liu A, Hodge D, Rubin D, Keil UD, Franck T (2005) High speed silicon Mach-Zehnder. Opt Express 13:3129–3135CrossRefGoogle Scholar
  57. 57.
    Gunn C (2006) CMOS photonics for high-speed interconnects. IEEE Micro 26:58–66CrossRefGoogle Scholar
  58. 58.
    Fang AW, Park H, Cohen O, Jones R, Paniccia M, Bowers J (2006) Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt Express 14:9203–9210CrossRefGoogle Scholar
  59. 59.
    Foster MA, Turner AC, Sharping JE, Schmidt BS, Lipson M, Gaeta AL (2006) Broadband optical parametric gain on a silicon photonic chip. Nature 441:960–963CrossRefGoogle Scholar
  60. 60.
    Fage-Pedersen J, Frandsen LA, Lavrinenko A, Borel PI (2006) A linear electrooptic effect in silicon, induced by use of strain. In Part of: 2006 EEE/LEOS international conference on proceedings of 3rd group IV photon, pp 37–39Google Scholar
  61. 61.
    Yin T, Cohen R, Morse M, Sarid G, Chetrit Y, Rubin D, Paniccia MJ (2007) 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Opt Express 15:13 965–13 971Google Scholar
  62. 62.
    Liu A, Liao L, Rubin D, Basak J, Nguyen H, Chetrit Y, Cohen R, Izhaky N, Paniccia M (2007) Silicon optical modulator for high-speed applications. In: Proceedings of 4th IEEE international conference group IV photon, pp 1–3Google Scholar
  63. 63.
    Masini G, Capellini G, Witzens J, Gunn C (2007) A four-channel, 10 Gbps monolithic optical receiver in 130 nm CMOS with integrated Ge waveguide photodetectors presented at the National fiber optic engineers conference, 2007, Paper PDP31, unpublishedGoogle Scholar
  64. 64.
    Xia F, Sekaric L, Vlasov Y (2007) Ultracompact optical buffers on a silicon chip. Nat Photon 1:65–71CrossRefGoogle Scholar
  65. 65.
    Vlasov Y, Green WMJ, Xia F (2008) High-throughput silicon nanophotonic deflection switch for on-chip optical networks. Nat Photon 2:242–246CrossRefGoogle Scholar
  66. 66.
    Kimberling LC Devices for silicon microphotonic interconnectionGoogle Scholar
  67. 67.
    Jalali B (2006) Silicon photonics. J Lightwave Technol 24(12):4600–4615CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.HITEC UniversityTaxilaPakistan
  2. 2.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.HITEC UniversityTaxilaPakistan

Personalised recommendations