Skip to main content

Introduction

  • Chapter
  • First Online:
Optical Precursors

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 967 Accesses

Abstract

The study of precursor could be traced back to 100 years ago, the time when Sommerfeld and Brillouin attempted to explore the propagation speed of a finite pulse. Precursors, generated from sharp rising edges of an optical pulse, therefore verify the speed limit raised by Einstein. As they pointed out, the information velocity never exceed the speed of light in vacuum c. The problem will become much more interesting when single photon source is involved. In this chapter, we would like to introduce the optical precursor in classical wave domain, and extend the discussion to the single-photon domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein, A.: On the electrodynamics of moving bodies. Ann. Phys. 17, 891 (1905)

    Article  MATH  Google Scholar 

  2. Basov, N.G., Ambartsumyan, R.V., Zuev, V.S., Kryukov, P.G., Letokhov, V.S.: Propagation velocity of an intense light pulse in a medium with inverse population. Sov. Phys. Doklady 10, 1039 (1966)

    ADS  Google Scholar 

  3. Garrett, C.G.B., McCumber, D.E.: Propagation of a Gaussian pulse through an anomalous dispersion medium. Phys. Rev. A 1, 305 (1970)

    Article  ADS  Google Scholar 

  4. Crisp, M.D.: Concept of group velocity in resonant pulse propagation. Phys. Rev. A 4, 2104 (1971)

    Article  ADS  Google Scholar 

  5. Puri, A., Birman, J.L.: Pulse propagation in spatially dispersive media. Phys. Rev. A 27, 1044 (1983)

    Article  ADS  Google Scholar 

  6. Mache, B.: Vers une rehabilitation des vitesses de groupe negatives? Opt. Commun. 49(5), 307–312 (1984)

    Article  ADS  Google Scholar 

  7. Faxvog, F.R., Chow, C.N.Y., Bieber, T., Carruthers, J.A.: Measured pulse velocity greater than c in a Neon absorption cell. Appl. Phys. Lett. 17, 192 (1970)

    Article  ADS  Google Scholar 

  8. Chu, S., Wong, S.: Linear pulse propagation in an absorbing medium. Phys. Rev. Lett. 48, 738–741 (1982)

    Article  ADS  Google Scholar 

  9. Segard, B., Mache, B.: Observation of negative velocity pulse propagation. Phys. Lett. A 109(5), 213–216 (1985)

    Article  ADS  Google Scholar 

  10. Mitchell, M.W., Chiao, R.Y.: Causality and negative group delays in a simple bandpass amplifier. Am. J. Phys. 66(1), 14–19 (1998)

    Article  ADS  Google Scholar 

  11. Diener, G.: Superluminal group velocities and information transfer. Phys. Lett. A 223, 327–331 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Hass, K., Busch, P.: Causality of superluminal barrier traversal. Phys. Lett. A 185, 9–13 (1994)

    Article  ADS  Google Scholar 

  13. Wang, L.J., Kuzmich, A., Dogariu, A.: Gain-assisted superluminal light propagation. Nature 406, 277–279 (2000)

    Article  ADS  Google Scholar 

  14. Stenner, M.D., Gauthier, D.J., Neifeld, M.A.: The speed of information in a “fast light” optical medium. Nature 425, 695–698 (2003)

    Article  ADS  Google Scholar 

  15. Gehring, G.M., Schweinsberg, A., Barsi, C., Kostinski, N., Boyd, R.W.: Observation of backward pulse propagation through a medium with a negative group velocity. Science 312, 895–897 (2006)

    Article  ADS  Google Scholar 

  16. Winful, H.G.: Nature of “superluminal” barrier tunneling. Phys. Rev. Lett. 90, 023901 (2003)

    Article  ADS  Google Scholar 

  17. Steinberg, A.M., Kwiat, P.G., Chiao, R.Y.: Measurement of the single-photon tunneling time. Phys. Rev. Lett. 71, 708 (1993)

    Article  ADS  Google Scholar 

  18. Marangos, J.: Faster than a speeding photon. Nature 406, 243–244 (2000)

    Article  ADS  Google Scholar 

  19. Büttiker, M., Washburn, S.: Ado about nothing much? Nature 422, 271–272 (2003)

    Article  ADS  Google Scholar 

  20. Chiao, R.Y.: Superluminal (but causal) propagation of wave packets in transparent media with inverted atomic populations. Phys. Rev. A 48, R34 (1993)

    Article  ADS  Google Scholar 

  21. Steinberg, A.M., Chiao, R.Y.: Dispersionless, highly superluminal propagation in a medium with a gain doublet. Phys. Rev. A 49, 2071 (1994)

    Article  ADS  Google Scholar 

  22. Harris, S.E.: Electromagnetically-induced transparency. Phys. Today 50, 36–42 (1997)

    Article  Google Scholar 

  23. Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    Article  ADS  Google Scholar 

  24. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  Google Scholar 

  25. Jeong, H., Du, S.: Two-way transparency in the light-matter interaction: Optical precursors with electromagnetically induced transparency. Phys. Rev. A 79, 011802 (2009). (R)

    Article  ADS  Google Scholar 

  26. Wei, D., Chen, J.F., Loy, M.M.T., Wong, G.K.L., Du, S.: Optical precursors with electromagnetically-induced transparency in cold atoms. Phys. Rev. Lett. 103, 093602 (2009)

    Article  ADS  Google Scholar 

  27. Brillouin, L.: Science and Information Theory. Academic press, New York (1956)

    MATH  Google Scholar 

  28. Sommerfeld, A.: Über die fortpflanzung des lichtes indispergierenden medien. Ann. Phys. 44, 177 (1914)

    Article  Google Scholar 

  29. Brillouin, L.: Über die fortpflanzung des lichtes in dispergierenden medien. ibid. 44, 203 (1914)

    Google Scholar 

  30. Brewer, R.G., Shoemaker, R.L.: Photo echo and optical nutation in molecules. Phys. Rev. Lett. 27, 631 (1971)

    Article  ADS  Google Scholar 

  31. Brewer, R.G., Shoemaker, R.L.: Optical free induction decay. Phys. Rev. A 6, 2001 (1972)

    Article  ADS  Google Scholar 

  32. Foster, K.L., Stenholm, S., Brewer, R.G.: Interference pulses in optical free induction decay. Phys. Rev. A 10, 2318 (1974)

    Article  ADS  Google Scholar 

  33. Hopf, F.A., Shea, R.F., Scully, M.O.: Theory of optical free-induction decay and two-photon superradiance. Phys. Rev. A 7, 2105 (1973)

    Article  ADS  Google Scholar 

  34. Loy, M.M.T.: Observation of two-photon optical nutation and free-induction decay. Phys. Rev. Lett. 36, 1454 (1976)

    Article  ADS  Google Scholar 

  35. Oughstun, K.E., Sherman, G.C.: Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium). J. Opt. Soc. Am. B 5(4), 817–849 (1988)

    Article  ADS  Google Scholar 

  36. Pleshko, P., Palócz, I.: Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain. Phys. Rev. Lett. 22, 1201 (1969)

    Article  ADS  Google Scholar 

  37. Aaviksoo, J., Kuhl, J., Ploog, K.: Observation of optical precursors at pulse propagation in GaAs. Phys. Rev. A 44, R5353 (1991)

    Article  ADS  Google Scholar 

  38. Lynch, F.J., Holland, R.E., Hamermesh, M.: Time dependence of resonantly filtered gamma rays from Fe57. Phys. Rev. 120, 513 (1960)

    Article  ADS  Google Scholar 

  39. Varoquaux, E., Williams, G.A., Avenel, O.: Pulse propagation in a resonant medium: Application to sound waves in superfluid 3He-B. Phys. Rev. B 34, 7617–7640 (1986)

    Article  ADS  Google Scholar 

  40. Falcon, E., Laroche, C., Fauve, S.: Observation of Sommerfeld precursors on a fluid surface. Phys. Rev. Lett. 91, 064502 (2003)

    Article  ADS  Google Scholar 

  41. Sakai, M., Nakahara, R., Kawase, J., Kunugita, H., Ema, K.: Polariton pulse propagation at exciton resonance in CuCl: Polariton beat and optical precursor. Phys. Rev. B 66, 033302 (2002)

    Article  ADS  Google Scholar 

  42. Choi, S., Österberg, U.L.: Observation of optical precursors in water. Phys. Rev. Lett. 92, 193903 (2004)

    Article  ADS  Google Scholar 

  43. Jeong, H., Dawes, A.M.C., Gauthier, D.J.: Direct observation of optical precursors in a region of anomalous dispersion. Phys. Rev. Lett. 96, 143901 (2006)

    Article  ADS  Google Scholar 

  44. Du, S., Belthangady, C., Kolchin, P., Yin, G.Y., Harris, S.E.: Observation of optical precursors at the biphoton level. Opt. Lett. 33, 2149 (2008)

    Article  ADS  Google Scholar 

  45. Crisp, M.D.: Propagation of small-area pulses of coherent light through a resonant medium. Phys. Rev. A 1, 1604–1611 (1970)

    Article  ADS  Google Scholar 

  46. Rothenberg, J.E., Grischkowsky, D., Balant, A.C.: Observation of the formation of the 0π pulse. Phys. Rev. Letts. 53(6), 552–555 (1984)

    Article  ADS  Google Scholar 

  47. Avenel, O., Varoquaux, E., Williams, G.A.: Comment on observation of the formation of 0π pulse. Phys. Rev. Lett. 53(21), 2058 (1984)

    Article  ADS  Google Scholar 

  48. Jeong, H., Österberg, U.: Coherent transients: optical precursors and 0π pulses. J. Opt. Soc. Am. B 25, B1–B5 (2008)

    Article  ADS  Google Scholar 

  49. Lukofsky, D., Bessette, J., Jeong, H., Garmire, E., Österberg, U.: Can precursors improve the transmission of energy at optical frequencies. J. Mod. Opt. 56(9), 1083–1090 (2009)

    Article  ADS  MATH  Google Scholar 

  50. Bloch, F.: Nuclear Induction. Phys. Rev. 70, 460 (1946)

    Article  ADS  Google Scholar 

  51. Grischkowsky, D., Loy, M.M.T., Liao, P.F.: Adiabatic following model for two-photon transitions: Nonlinear mixing and pulse propagation. Phys. Rev. A 12, 2514 (1975)

    Article  ADS  Google Scholar 

  52. Liao, P.F., Bjorkholm, J.E., Gordon, J.P.: Observation of two-photon free-induction decay in atomic sodium vapor. Phys. Rev. Lett. 39, 15 (1977)

    Article  ADS  Google Scholar 

  53. Gold, D.G., Hahn, E.L.: Two-photon transient phenomena. Phys. Rev. A 16, 324 (1977)

    Article  ADS  Google Scholar 

  54. Lee, H.W.L., Wessel, J.E.: Observation of dressed-atom effects in three-level free-induction decay. Phys. Rev. Lett. 59, 1416 (1987)

    Article  ADS  Google Scholar 

  55. Toyoda, K., Takahashi, Y., Ishikawa, K., Yabuzaki, T.: Optical free-induction decay of laser-cooled 85Rb. Phys. Rev. A 56, 1564 (1997)

    Article  ADS  Google Scholar 

  56. Chen, J.F., Wang, S., Wei, D., Loy, M.M.T., Wong, G.K.L., Du, S.: Optical coherent transients in cold atoms: From free-induction decay to optical precursors. Phys. Rev. A 81, 033844 (2010)

    Article  ADS  Google Scholar 

  57. LeFew, W.R., Venakides, S., Gauthier, D.J.: Accurate description of optical precursors and their relation to weak-field coherent optical transients. Phys. Rev. A 79, 063842 (2009)

    Article  ADS  Google Scholar 

  58. Gauthier, D.J., Boyd, R.W.: Fast light, slow light and optical precursors: what does it all mean? Photonics Spectra 1, 82–90 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiefei Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Chen, J., Jeong, H., Loy, M.M.T., Du, S. (2013). Introduction. In: Optical Precursors. SpringerBriefs in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-4451-94-9_1

Download citation

Publish with us

Policies and ethics