Skip to main content

Point Spread Function and Modulation Transfer Function

  • Chapter
  • First Online:
New Computation Methods for Geometrical Optics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 178))

  • 2179 Accesses

Abstract

As stated in Sect. 3.5, the distribution of the ray density of the spot diagram formed in the image plane is called Point Spread Function (PSF). PSF plays an important role in the image formation theory, since it describes the impulse response of an optical system to a source point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.N. Mahajan, Optical Imaging and Aberrations Part I Ray Geometrical Optics (SPIE—The Interational Society for Optical Engineering, Bellingham, 1998)

    Google Scholar 

  2. K.H. Tseng, C. Kung, T.T. Liao, H.P. Chang, Calculation of modulation transfer function of an optical system by using skew ray tracing. Trans. Can. Soc. Mech. Eng. (J. Mech. Eng.) 33, 429–442 (2009)

    Google Scholar 

  3. S. Inoue, N. Tsumura, Y. Miyake, Measuring MTF of paper by sinusoidal test pattern projection. J. Imaging Sci. Technol. 41, 657–661 (1997)

    Google Scholar 

  4. G.D. Boreman, S. Yang, Modulation transfer function measurement using three- and four-bar targets. Appl. Opt. 34, 8050–8052 (1995)

    Article  ADS  Google Scholar 

  5. D.N. Sitter, J.S. Goddard, R.K. Ferrell, Method for the measurement of the modulation transfer function of sampled imaging systems from bar-target patterns. Appl. Opt. 34, 746–751 (1995)

    Article  ADS  Google Scholar 

  6. R. Barakat, Determination of the optical transfer function directly from the edge spread function. J. Opt. Soc. Am. 55, 1217–1221 (1965)

    Article  ADS  Google Scholar 

  7. G.L. Rogers, Measurement of the modulation transfer function of paper. Appl. Opt. 37, 7235–7240 (1998)

    Article  ADS  Google Scholar 

  8. S.K. Park, R. Schowengerdt, M. Kaczynski, Modulation-transfer-function analysis for sampled image system. Appl. Opt. 23, 2572–2582 (1984)

    Article  ADS  Google Scholar 

  9. S. Inoue, N. Tsumura, Y. Miyake, Measuring MTF of paper by sinusoidal test pattern projection. J. Imaging Sci. Technol. 41, 657–661 (1997)

    Google Scholar 

  10. K.H. Tseng, C. Kung, T.T. Liao, H.P. Chang, Calculation of modulation transfer function of an optical system by using skew ray tracing. Trans. Can. Soc. Mech. Eng. (J. Mech. Eng.) 33, 429–442 (2009)

    Google Scholar 

  11. E. Giakoumakis, M.C. Katsarioti, G.S. Panayiotakis, Modulation transfer function of thin transparent foils in radiographic cassettes Appl. Phys. Solids Surf. 52, 210–212 (1991)

    Google Scholar 

  12. W.J. Smith, Modern Optical Engineering, 3rd edn. (Edmund Industrial Optics, Barrington, 2001)

    Google Scholar 

  13. O.N. Stavroudis, The Optics of Rays, Wavefronts, and Caustics (Academic press, New York, 1972)

    Google Scholar 

  14. O.N. Stavroudis, The Mathematics of Geometrical and Physical Optics (Wiley-VCH Verlag, Weinheim, 2006)

    Google Scholar 

  15. J.A. Hoffnagle, D.L. Shealy, Refracting the k-function: Stavroudis’s solution to the eikonal equation for multielement optical systems. J. Opt. Soc. Am. A 28, 1312–1321 (2011)

    Article  ADS  Google Scholar 

  16. D.L. Shealy, D.G. Burkhard, Caustic surfaces and irradiance for reflection and refraction from an ellipsoid, elliptic parabolid and elliptic cone. Appl. Opt. 12, 2955–2959 (1973)

    Article  ADS  Google Scholar 

  17. D.L. Shealy, D.G. Burkhard, Caustic surface merit functions in optical design. J. Opt. Soc. Am. 66, 1122 (1976)

    Google Scholar 

  18. D.L. Shealy, Analytical illuminance and caustic surface calculations in geometrical optics. Appl. Opt. 15, 2588–2596 (1976)

    Article  ADS  Google Scholar 

  19. T.B. Andersen, Optical aberration functions: computation of caustic surfaces and illuminance in symmetrical systems. Appl. Opt. 20, 3723–3728 (1981)

    Article  ADS  Google Scholar 

  20. A.M. Kassim, D.L. Shealy, Wave front equation, caustics, and wave aberration function of simple lenses and mirrors. Appl. Opt. 21, 516–522 (1988)

    Article  ADS  Google Scholar 

  21. A.M. Kassim, D.L. Shealy, D.G. Burkhard, Caustic merit function for optical design. Appl. Opt. 28, 601–606 (1989)

    Article  ADS  Google Scholar 

  22. G. Silva-Orthigoza, M. Marciano-Melchor, O. Carvente-Munoz, R. Silva-Ortigoza, Exact computation of the caustic associated with the evolution of an aberrated wavefront. J. Opt. A Pure Appl. Opt. 4, 358–365 (2002)

    Google Scholar 

  23. D.L. Shealy, J.A. Hoffnagle, Wavefront and caustics of a plane wave refracted by an arbitrary surface. J. Opt. Soc Am. A 25, 2370–2382 (2008)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Psang Dain Lin .

Appendices

Appendix A<!--RH>Appendix<!--\RH>

For the case of zero rotation, the coordinate transformation between coordinate frames \( (\text{x}^{\prime}y^{\prime}\text{z}^{\prime})_{\text{n}} \) and \( (xyz)_{\text{n}} \) can be obtained simply by setting \( \mu = 0 \) in Eq. (6.13). The MTF is therefore denoted as \( {\text{MTF}}(\nu ,0) \). Since \( {\text{MTF}}^{2} (\nu ,0) = {\text{L}}_{\text{c}}^{2} (\nu ,0) + {\text{L}}_{\text{s}}^{2} (\nu ,0) \), the gradient of \( {\text{MTF}}^{2} (\nu ,0) \) with respect to \( {\text{x}}_{\text{n/chief}} \) can be obtained from

$$ \begin{aligned} \frac{{\partial {\text{MTF}}^{2} \left( {\nu ,0} \right)}}{{\partial {\text{x}}_{\text{n/chief}} }} &= 2{\text{MTF}}\left( {\nu ,0} \right)\frac{{\partial {\text{MTF}}\left( {\nu ,0} \right)}}{{\partial {\text{x}}_{\text{n/chief}} }} = \frac{{\partial {\text{MTF}}^{2} \left( {\nu ,0} \right)}}{{\partial \text{x}^{\prime}_{\text{n}} }}\frac{{\partial \text{x}^{\prime}_{\text{n}} }}{{\partial {\text{x}}_{\text{n/chief}} }} + \frac{{\partial {\text{MTF}}^{2} \left( {\nu ,0} \right)}}{{\partial \text{z}^{\prime}_{\text{n}} }}\frac{{\partial \text{z}^{\prime}_{\text{n}} }}{{\partial {\text{x}}_{\text{n/chief}} }} \\ &= 2\left( {{\text{L}}_{\text{c}} \left( {\nu ,0} \right)\frac{{\partial {\text{L}}_{\text{c}} \left( {\nu ,0} \right)}}{{\partial \text{x}^{\prime}_{\text{n}} }} + {\text{L}}_{\text{s}} \left( {\nu ,0} \right)\frac{{\partial {\text{L}}_{\text{s}} \left( {\nu ,0} \right)}}{{\partial \text{x}^{\prime}_{\text{n}} }}} \right)\frac{{\partial \text{x}^{\prime}_{\text{n}} }}{{\partial {\text{x}}_{\text{n/chief}} }} \\ \, & + 2\left( {{\text{L}}_{\text{c}} \left( {\nu ,0} \right)\frac{{\partial {\text{L}}_{\text{c}} \left( {\nu ,0} \right)}}{{\partial \text{z}^{\prime}_{\text{n}} }} + {\text{L}}_{\text{s}} \left( {\nu ,0} \right)\frac{{\partial {\text{L}}_{\text{s}} \left( {\nu ,0} \right)}}{{\partial \text{z}^{\prime}_{\text{n}} }}} \right)\frac{{\partial \text{z}^{\prime}_{\text{n}} }}{{\partial {\text{x}}_{\text{n/chief}} }} \\ &= 0 \, . \\ \end{aligned} $$
(A.1)

Similarly, one has

$$ \frac{{\partial {\text{MTF}}^{2} \left( {\nu ,0} \right)}}{{\partial {\text{z}}_{\text{n/chief}} }} = 2{\text{MTF}}\left( {\nu ,0} \right)\frac{{\partial {\text{MTF}}\left( {\nu ,0} \right)}}{{\partial {\text{z}}_{\text{n/chief}} }} = \frac{{\partial {\text{MTF}}^{2} \left( {\nu ,\mu } \right)}}{{\partial \text{x}^{\prime}_{\text{n}} }}\frac{{\partial \text{x}^{\prime}_{\text{n}} }}{{\partial {\text{z}}_{\text{n/chief}} }} + \frac{{\partial {\text{MTF}}^{2} \left( {\nu ,\mu } \right)}}{{\partial \text{z}^{\prime}_{\text{n}} }}\frac{{\partial \text{z}^{\prime}_{\text{n}} }}{{\partial {\text{z}}_{\text{n/chief}} }} = 0. $$
(A.2)

Equations (A.1) and (A.2) show \( {{\partial {\text{MTF}}(\nu ,0)} \mathord{\left/ {\vphantom {{\partial {\text{MTF}}(\nu ,0)} {\partial {\text{x}}_{\text{n/chief}} }}} \right. \kern-0pt} {\partial {\text{x}}_{\text{n/chief}} }} = {{\partial {\text{MTF}}(\nu ,0)} \mathord{\left/ {\vphantom {{\partial {\text{MTF}}(\nu ,0)} {\partial {\text{z}}_{\text{n/chief}} }}} \right. \kern-0pt} {\partial {\text{z}}_{\text{n/chief}} }} = 0 \), indicating that the \( {\text{MTF}}(\nu ,0) \) value is stationary in the neighborhood of \( \left[ {\begin{array}{*{20}c} {{\text{x}}_{\text{n/chief}} } & 0& {{\text{z}}_{\text{n/chief}} } & 1\\ \end{array} } \right]^{\text{T}} \), proving Theorem 6.1.

Appendix B

The gradients of phase shift \( \varpi (\nu ,0) \) with respect to \( {\text{x}}_{\text{n/chief}} \) and \( {\text{z}}_{\text{n/chief}} \) can be obtained respectively as

$$ \begin{aligned} \frac{\partial \varpi (\nu ,0)}{{\partial {\text{x}}_{\text{n/chief}} }} = & \frac{\partial \varpi (\nu ,0)}{{\partial \text{x}^{\prime}_{\text{n}} }}\frac{{\partial \text{x}^{\prime}_{\text{n}} }}{{\partial {\text{x}}_{\text{n/chief}} }} + \frac{\partial \varpi (\nu ,0)}{{\partial \text{z}^{\prime}_{\text{n}} }}\frac{{\partial \text{z}^{\prime}_{\text{n}} }}{{\partial {\text{x}}_{\text{n/chief}} }} \\ = & \frac{{{\text{L}}_{\text{c}} (\nu ,0)}}{{{\text{L}}_{\text{c}} (\nu ,0)^{2} + {\text{L}}_{\text{s}} (\nu ,0)^{2} }}\frac{{\partial {\text{L}}_{\text{s}} (\nu ,0)}}{{\partial \text{x}^{\prime}_{\text{n}} }}\frac{{\partial \text{x}^{\prime}_{\text{n}} }}{{\partial {\text{x}}_{\text{n/chief}} }} - \frac{{{\text{L}}_{\text{s}} (\nu ,0)}}{{{\text{L}}_{\text{c}} (\nu ,0)^{2} + {\text{L}}_{\text{s}} (\nu ,0)^{2} }}\frac{{\partial {\text{L}}_{\text{c}} (\nu ,0)}}{{\partial \text{x}^{\prime}_{\text{n}} }} \, \frac{{\partial \text{x}^{\prime}_{\text{n}} }}{{\partial {\text{x}}_{\text{n/chief}} }} \\ = & \, \frac{{\partial \text{x}^{\prime}_{\text{n}} }}{{\partial {\text{x}}_{\text{nc}} }} = - 1 \, , \\ \end{aligned} $$
(B.1)
$$ \begin{aligned} \frac{\partial \varpi (\nu ,0)}{{\partial {\text{z}}_{\text{n/chief}} }} = & \frac{\partial \varpi (\nu ,0)}{{\partial \text{x}^{\prime}_{\text{n}} }}\frac{{\partial \text{x}^{\prime}}}{{\partial {\text{z}}_{\text{n/chief}} }} + \frac{\partial \varpi (\nu ,0)}{{\partial \text{z}^{\prime}_{\text{n}} }}\frac{{\partial \text{z}^{\prime}_{\text{n}} }}{{\partial {\text{z}}_{\text{n/chief}} }} \\ = & \frac{{{\text{L}}_{\text{c}} (\nu ,0)}}{{{\text{L}}_{\text{c}} (\nu ,0)^{2} + {\text{L}}_{\text{s}} (\nu ,0)^{2} }}\frac{{\partial {\text{L}}_{\text{s}} (\nu ,0)}}{{\partial \text{x}^{\prime}_{\text{n}} }}\frac{{\partial \text{x}^{\prime}_{\text{n}} }}{{\partial {\text{z}}_{\text{n/chief}} }} - \frac{{L_{s} (\nu ,0)}}{{{\text{L}}_{\text{c}} (\nu ,0)^{2} + {\text{L}}_{\text{s}} (\nu ,0)^{2} }}\frac{{\partial L_{c} (\nu ,0)}}{{\partial \text{x}^{\prime}_{\text{n}} }} \, \frac{{\partial \text{x}^{\prime}_{\text{n}} }}{{\partial {\text{z}}_{\text{n/chief}} }} \\ = & \, \frac{{\partial \text{x}^{\prime}_{\text{n}} }}{{\partial {\text{z}}_{\text{n/chief}} }} = 0. \\ \end{aligned} $$
(B.2)

Equation (B.1) shows that \( \varpi (\nu ,0) \) changes with a change of \( {\text{x}}_{\text{n/chief}} \). However, Eq. (B.2) shows that \( \varpi (\nu ,0) \) is unchanged with small changes of \( {\text{z}}_{\text{n/chief}} \). As discussed in Sect. 3.6, a phase shift of \( \varpi = 180^{ \circ } \) yields a reversal of contrast.

Appendix C

$$ \begin{aligned} &{\text{L}}_{\text{c}} (\nu ,{{\upmu}} + 180^{ \circ } )\\ &= \frac{1}{{{{\uppsi}}_{0} }}\iint {\text{C}\left[ {2\uppi \nu ({\text{x}}_{\text{n}} - {\text{x}}_{\text{n/chief}} ){\text{C}}({{\upmu}} + 180^{ \circ } ) + 2\uppi \nu ({\text{z}}_{\text{n}} - {\text{z}}_{\text{n/chief}} ){\text{S}}({{\upmu}} + 180^{ \circ } )} \right]{\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} \\ &= \frac{1}{{{{\uppsi}}_{0} }}\iint {{\text{C}}\left[ {2\uppi \nu ({\text{x}}_{\text{n}} - {\text{x}}_{\text{n/chief}} ){\text{C}}\mu + 2\uppi \nu ({\text{z}}_{\text{n}} - {\text{z}}_{\text{n/chief}} ){\text{S}}\mu } \right]{\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} = {\text{L}}_{\text{c}} (\nu ,\mu ). \\ \end{aligned} $$
(C.1)
$$ \begin{aligned} &{\text{L}}_{\text{s}} (\nu ,{{\upmu}} + 180^{ \circ } ) \\ &= \frac{1}{{{{\uppsi}}_{0} }}\iint {{\text{S}}\left[ {2\uppi \nu ({\text{x}}_{\text{n}} - {\text{x}}_{\text{n/chief}} ){\text{C}}({{\upmu}} + 180^{ \circ } ) + 2\uppi \nu ({\text{z}}_{\text{n}} - {\text{z}}_{\text{n/chief}} ){\text{S}}({{\upmu}} + 180^{ \circ } )} \right]{\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} \\ &= \frac{ - 1}{{{{\uppsi}}_{0} }}\iint {{\text{S}}\left[ {2\uppi \nu ({\text{x}}_{\text{n}} - {\text{x}}_{\text{n/chief}} ){\text{C}}({{\upmu}}) + 2\uppi \nu ({\text{z}}_{\text{n}} - {\text{z}}_{\text{n/chief}} ){\text{S}}\mu } \right]{\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} = - {\text{L}}_{\text{s}} (\nu ,{{\upmu}}). \\ \end{aligned} $$
(C.2)

As a result, one has the following two equations from Eqs. (C.1) and (C.2):

$$ {\text{MTF}}(\nu ,{{\upmu}} + 180^{ \circ } ) = \sqrt {[{\text{L}}_{\text{c}} (\nu ,{{\upmu}} + 180^{ \circ } )]^{2} + [{\text{L}}_{\text{s}} (\nu ,{{\upmu}} + 180^{ \circ } )]^{2} } = \sqrt {[{\text{L}}_{\text{c}} (\nu ,{{\upmu}})]^{2} + [{\text{L}}_{\text{s}} (\nu ,\mu )]^{2} } = {\text{MTF}}(\nu ,\mu ), $$
$$ \varpi (\nu ,{{\upmu}} + 180^{ \circ } ) = {\text{atan}}2({\text{L}}_{\text{s}} (\nu ,{{\upmu}} + 180^{ \circ } ),{\text{L}}_{\text{c}} (\nu ,{{\upmu}} + 180^{ \circ } )) = {\text{atan}}2( - {\text{L}}_{\text{s}} (\nu ,{{\upmu}}),{\text{L}}_{\text{c}} (\nu ,\mu )) = - \varpi (\nu ,\mu ). $$

Appendix D

Recall that in the irradiance method of Sect. 6.1, we indicated that a general source ray \( {\bar{\text{R}}}_{0} \) intersects the image plane at coordinates \( \left[ {\begin{array}{*{20}c} {{\text{x}}_{\text{n}} } & 0& {{\text{z}}_{\text{n}} } & 1\\ \end{array} } \right]^{T} \), where \( {\text{x}}_{\text{n}} = {\text{x}}_{\text{n}} ({{\upalpha}}_{0} ,{{\upbeta}}_{0} ) \) and \( {\text{z}}_{\text{n}} = {\text{z}}_{\text{n}} ({{\upalpha}}_{0} ,{{\upbeta}}_{0} ) \). As shown in Fig. 6.5, and with no loss in generality, the general source point can always be defined as lying on the \( y_{0} z_{0} \) plane and expressed as \( {\bar{\text{P}}}_{0} = \left[ {\begin{array}{*{20}c} 0& {{\text{P}}_{{ 0 {\text{y}}}} } & {{\text{P}}_{{ 0 {\text{z}}}} } & 1\\ \end{array} } \right]^{\text{T}} \) due to symmetry of the optical system. As a result, its chief ray intersects \( z_{n} \) axis of the image coordinate frame \( (xyz)_{\text{n}} \), thus

$$ {\text{x}}_{\text{n/chief}} = {\text{y}}_{\text{n/chief}} = 0. $$
(D.1)

Furthermore, two general rays \( \left[ {\begin{array}{*{20}c} {{\bar{\text{P}}}_{ 0} } & {\bar{\ell }{}_{0/1}} \\ \end{array} } \right]^{\text{T}} \) and \( \left[ {\begin{array}{*{20}c} {{\bar{\text{P}}}_{ 0} } & {\bar{\ell }{}_{0/2}} \\ \end{array} } \right]^{\text{T}} \), where \( \bar{\ell }{}_{0/1} = \left[ {\begin{array}{*{20}c} {{\text{C}}\beta_{0} {\text{C}}(90^{ \circ } - {{\upalpha}}_{0} )} & {{\text{C}}\beta_{0} {\text{S}}(90^{ \circ } - {{\upalpha}}_{0} )} & {{\text{S}}\beta_{0} } & 0 \\ \end{array} } \right]^{\text{T}} \) and \( \bar{\ell }{}_{0/2} = \left[ {\begin{array}{*{20}c} {{\text{C}}\beta_{0} {\text{C}}(90^{ \circ } + {{\upalpha}}_{0} )} & {{\text{C}}\beta_{0} {\text{S}}(90^{ \circ } + {{\upalpha}}_{0} )} & {{\text{S}}\beta_{0} } & 0 \\ \end{array} } \right]^{\text{T}} \), always have identical \( {\text{z}}_{\text{n}} \) intersections and oppositely signed \( {\text{x}}_{\text{n}} \) values in this axis-symmetrical optical system, i.e.

$$ {\text{x}}_{\text{n}} (90^{ \circ } - {{\upalpha}}_{0} ,{{\upbeta}}_{0} ) = - {\text{x}}_{\text{n}} (90^{ \circ } + {{\upalpha}}_{0} ,{{\upbeta}}_{0} ), $$
(D.2)
$$ {\text{z}}_{\text{n}} \left( {90^{ \circ } - {{\upalpha}}_{0} ,{{\upbeta}}_{0} } \right) = {\text{z}}_{\text{n}} \left( {90^{ \circ } + {{\upalpha}}_{0} ,{{\upbeta}}_{0} } \right). $$
(D.3)

Now we consider the calculation of \( {\text{L}}_{\text{c}} (\nu ,90^{ \circ } + {{\upmu}}) \) by substituting Eq. (D.1) into Eq. (6.28), yielding

$$\begin{aligned} {\text{L}}_{\text{c}} \left( {\nu ,90^{ \circ } + {{\upmu}}}\right) & =\frac{1}{{{{\uppsi}}_{0} }}\iint {{\text{C}}\left({2\uppi \nu \left[ {{\text{x}}_{\text{n}} {\text{C}}\left( {90^{\circ } + \mu } \right) + \left( {{\text{z}}_{\text{n}} -{\text{z}}_{\text{n/chief}} } \right){\text{S}}\left( {90^{ \circ }+ \mu } \right)} \right]} \right){\text{C}}\beta_{0}}{\text{d}}\alpha_{0} {\text{d}}\beta_{0} \\ &=\frac{{{\text{C}}\left( {2\uppi \nu {\text{z}}_{\text{n/chief}}{\text{C}}\mu } \right)}}{{{{\uppsi}}_{0} }}\iint {{\text{C}}\left({2\uppi \nu \left( {{\text{x}}_{\text{n}} {\text{S}}\mu -{\text{z}}_{\text{n}} {\text{C}}\mu } \right)}\right){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0}\\ &\quad - \frac{{{\text{S}}\left( {2\uppi \nu{\text{z}}_{\text{n/chief}} {\text{C}}\mu }\right)}}{{{{\uppsi}}_{0} }}\iint {{\text{S}}\left( {2\uppi \nu\left( {{\text{x}}_{\text{n}} {\text{S}}\mu - {\text{z}}_{\text{n}}{\text{C}}\mu } \right)} \right){\text{C}}\beta_{0}}{\text{d}}\alpha_{0} {\text{d}}\beta_{0}\\ & =\frac{{{\text{C}}\left( {2\uppi \nu{\text{z}}_{\text{n/chief}} {\text{C}}\mu }\right)}}{{{{\uppsi}}_{0} }}\left[ {\iint {{\text{C}}\left( {2\uppi\nu {\text{x}}_{\text{n}} {\text{S}}\mu } \right){\text{C}}\left({2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu }\right){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0}} \right.\left. { + \iint {{\text{S}}\left( {2\uppi \nu{\text{x}}_{\text{n}} {\text{S}}\mu } \right){\text{S}}\left({2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu }\right){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0}} \right] \\ & \quad - \frac{{{\text{S}}\left( {2\uppi \nu{\text{z}}_{\text{n/chief}} {\text{C}}\mu }\right)}}{{{{\uppsi}}_{0} }}\left[ {\iint {{\text{S}}\left( {2\uppi\nu {\text{x}}_{\text{n}} {\text{S}}\mu } \right){\text{C}}\left({2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu }\right){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0}} \right.\left. { - \iint {{\text{C}}\left( {2\uppi \nu{\text{x}}_{\text{n}} {\text{S}}\mu } \right){\text{S}}\left({2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu }\right){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0}} \right]. \end{aligned} $$
(D.4)

If the upper and lower integration limits of \( {{\upalpha}}_{ 0} \) are given by \( 90^{ \circ } + \alpha_{{0/{\text{limit}}}} \) and \( 90^{ \circ } - \alpha_{{0/{\text{limit}}}} \), respectively, the integrand of the first term in Eq. (D.4) can be written in the form shown in Eq. (D.5) when Eqs. (D.2) and (D.3) are used.

$$ \begin{aligned} & \iint {{\text{C}}\left( {2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu } \right){\text{C}}\left( {2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu } \right){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} \\ & \quad= \int {\left[ {\int_{{90^{ \circ } - \alpha_{{0/{\text{limit}}}} }}^{{90^{ \circ } + \alpha_{{0/{\text{limit}}}} }} {{\text{C}}\left( {2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu } \right){\text{C}}\left( {2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu } \right){\text{d}}\left( {{{\upalpha}}_{0} - 90^{ \circ } } \right)} } \right]} {\text{C}}\beta_{0} {\text{d}}\beta_{0} \\ & \quad= \int {\left[ {\int_{{ - \alpha_{{0/{\text{limit}}}} }}^{{\alpha_{{0/{\text{limit}}}} }} {{\text{C}}\left( {2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu } \right){\text{C}}\left( {2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu } \right){\text{d}}\alpha_{0} } } \right]} {\text{C}}\beta_{0} {\text{d}}\beta_{0} \\ & \quad= \int {\left[ {\int_{{ - \alpha_{{0/{\text{limit}}}} }}^{0} {{\text{C}}\left( {2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu } \right){\text{C}}\left( {2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu } \right){\text{d}}\alpha_{0} + \int_{0}^{{\alpha_{{0/{\text{limit}}}} }} {{\text{C}}\left( {2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu } \right){\text{C}}\left( {2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu } \right){\text{d}}\alpha_{0} } } } \right]} {\text{C}}\beta_{0} {\text{d}}\beta_{0} \\ & \quad= 2\int {\left[ {\int_{0}^{{\alpha_{{0/{\text{limit}}}} }} {{\text{C}}\left( {2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu } \right){\text{C}}\left( {2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu } \right){\text{d}}\alpha_{0} } } \right]} {\text{C}}\beta_{0} {\text{d}}\beta_{0} . \\ \end{aligned} $$
(D.5)

Similarly, the second, third, and fourth terms in Eq. (D.4) can be rewritten in the forms shown in Eqs. (D.6), (D.7) and (D.8), respectively, i.e.

$$ \iint {{\text{S}}(2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu ){\text{S}}(2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu ){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} = 0, $$
(D.6)
$$ \iint {{\text{S}}(2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu ){\text{C}}(2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu ){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} = 0, $$
(D.7)
$$ \begin{aligned} & \iint {{\text{C}}(2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu ){\text{S}}(2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu ){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} \\ & \quad = 2\int {\left[ {\int_{0}^{{\alpha_{{0/{\text{limit}}}} }} {{\text{C}}(2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu ){\text{S}}(2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu ){\text{d}}\alpha_{0} } } \right]} {\text{C}}\beta_{0} {\text{d}}\beta_{0} . \\ \end{aligned} $$
(D.8)

Substituting Eqs. (D.5), (D.6), (D.7) and (D.8) into Eq. (D.4) gives

$$ \begin{aligned} {\text{L}}_{\text{c}} (\nu ,90^{ \circ } + {{\upmu}}) = & \frac{{2{\text{C}}(2\uppi \nu {\text{z}}_{\text{n/chief}} {\text{C}}\mu )}}{{{{\uppsi}}_{0} }}\int {\left[ {\int_{0}^{{\alpha_{{0{\text{limit}}}} }} {{\text{C}}(2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu ){\text{C}}(2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu ){\text{d}}\alpha_{0} } } \right]} {\text{C}}\beta_{0} {\text{d}}\beta_{0} \\ & + \frac{{2{\text{S}}(2\uppi \nu {\text{z}}_{\text{n/chief}} {\text{C}}\mu )}}{{{{\uppsi}}_{0} }}\int {\left[ {\int_{0}^{{\alpha_{{0/{\text{limit}}}} }} {{\text{C}}(2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu ){\text{S}}(2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu ){\text{d}}\alpha_{0} } } \right]} {\text{C}}\beta_{0} {\text{d}}\beta_{0} . \\ \end{aligned} $$
(D.9)

Since Eq. (D.9) indicates that \( {\text{L}}_{\text{c}} (\nu ,90^{ \circ } + {{\upmu}}) \) is an even function with respect to \( \mu \), we have

$$ {\text{L}}_{\text{c}} (\nu ,90^{ \circ } + {{\upmu}}) = {\text{L}}_{\text{c}} (\nu ,90^{ \circ } - {{\upmu}}). $$
(D.10)

Similarly, by substituting \( {{\upmu}} = 90^{ \circ } + {{\upmu}} \) and Eq. (D.1) into Eq. (6.29), \( {\text{L}}_{\text{s}} (\nu ,90^{ \circ } + {{\upmu}}) \) can be rewritten as

$$ \begin{aligned} {\text{L}}_{\text{s}} (\nu ,90^{ \circ } + {{\upmu}}) =&\,\frac{1}{{{{\uppsi}}_{0} }}\iint {{\text{S}}\left( {2\uppi \nu \left[ {{\text{x}}_{\text{n}} {\text{C}}(90^{ \circ } + {{\upmu}}) + ({\text{z}}_{\text{n}} {\text{ - z}}_{\text{n/chief}} ){\text{C}}(90^{ \circ } + {{\upmu}})} \right]} \right){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} \\ =&\,\frac{{ - {\text{S}}(2\uppi \nu {\text{C}}\mu {\text{z}}_{\text{n/chief}} )}}{{{{\uppsi}}_{0} }}\iint {{\text{C}}\left( {2\uppi \nu ({\text{x}}_{\text{n}} {\text{S}}\mu - {\text{z}}_{\text{n}} {\text{C}}\mu )} \right){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} \\ \, & - \frac{{{\text{C}}(2\uppi \nu {\text{z}}_{\text{n/chief}} {\text{C}}\mu )}}{{{{\uppsi}}_{0} }}\iint {{\text{S}}\left( {2\uppi \nu ({\text{x}}_{\text{n}} {\text{S}}\mu - {\text{z}}_{\text{n}} {\text{C}}\mu )} \right){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} \\ =&\,\frac{{ - {\text{S}}(2\uppi \nu {\text{z}}_{\text{n/chief}} {\text{C}}\mu )}}{{{{\uppsi}}_{0} }}\left[ {\iint {{\text{C}}(2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu ){\text{C}}(2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu ){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} } \right.\left. { + \iint {{\text{S}}(2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu ){\text{S}}(2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu ){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} } \right] \\ & - \frac{{{\text{C}}(2\uppi \nu z_{\text{n/chief}} C\mu )}}{{\uppsi_{0} }}\left[ {\iint {{\text{S}}(2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu ){\text{C}}(2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu ){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} } \right.\left. { - \iint {{\text{C}}(2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu ){\text{S}}(2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu ){\text{C}}\beta_{0} }{\text{d}}\alpha_{0} {\text{d}}\beta_{0} } \right] \\ =&\,\frac{{ - 2{\text{S}}(2\uppi \nu {\text{z}}_{\text{n/chief}} {\text{C}}\mu )}}{{{{\uppsi}}_{0} }}\int {\left[ {\int_{0}^{{\alpha_{{0/{\text{limit}}}} }} {{\text{C}}(2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu ){\text{C}}(2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu ){\text{d}}\alpha_{0} } } \right]} {\text{C}}\beta_{0} {\text{d}}\beta_{0} \\ \, & + \frac{{2{\text{C}}(2\uppi \nu {\text{z}}_{\text{n/chief}} {\text{C}}\mu )}}{{{{\uppsi}}_{0} }}\int {\left[ {\int_{0}^{{\alpha_{{0/{\text{limit}}}} }} {{\text{C}}(2\uppi \nu {\text{x}}_{\text{n}} {\text{S}}\mu ){\text{S}}(2\uppi \nu {\text{z}}_{\text{n}} {\text{C}}\mu ){\text{d}}\alpha_{0} } } \right]} {\text{C}}\beta_{0} {\text{d}}\beta_{0} . \\ \end{aligned} $$
(D.11)

Again, since \( {\text{L}}_{\text{s}} (\nu ,90^{ \circ } + {{\upmu}}) \) is an even function with respect to \( \mu \), one has

$$ {\text{L}}_{\text{s}} (\nu ,90^{ \circ } + {{\upmu}}) = {\text{L}}_{\text{s}} (\nu ,90^{ \circ } - {{\upmu}}). $$
(D.12)

Then, from Eqs. (D.10) and (D.12), we have

$$ \begin{aligned} {\text{MTF}}(\nu ,90^{ \circ } + {{\upmu}}) &= \sqrt {[{\text{L}}_{\text{c}} (\nu ,90^{ \circ } + {{\upmu}})]^{2} + [{\text{L}}_{\text{s}} (\nu ,90^{ \circ } + {{\upmu}})]^{2} } \\ &= \sqrt {[{\text{L}}_{\text{c}} (\nu ,90^{ \circ } - {{\upmu}})]^{2} + [{\text{L}}_{\text{s}} (\nu ,90^{ \circ } - {{\upmu}})]^{2} } = {\text{MTF}}(\nu ,90^{ \circ } - {{\upmu}}), \\ \end{aligned} $$
(D.13)

and

$$ \begin{aligned} \varpi (\nu ,90^{ \circ } + {{\upmu}}) &={\text{atan}}2({\text{L}}_{\text{s}} (\nu ,90^{ \circ } + {{\upmu}}),{\text{L}}_{\text{c}} (\nu ,90^{ \circ } + {{\upmu}})) \\ &={\text{atan}}2({\text{L}}_{\text{s}} (\nu ,90^{ \circ } - {{\upmu}}),{\text{L}}_{\text{c}} (\nu ,90^{ \circ } - {{\upmu}})) = \varpi (\nu ,90^{ \circ } - {{\upmu}}). \\ \end{aligned} $$
(D.14)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lin, P.D. (2014). Point Spread Function and Modulation Transfer Function. In: New Computation Methods for Geometrical Optics. Springer Series in Optical Sciences, vol 178. Springer, Singapore. https://doi.org/10.1007/978-981-4451-79-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-79-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4451-78-9

  • Online ISBN: 978-981-4451-79-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics