Skip to main content

The Jacobian Matrix of a Ray with Respect to System Variable Vector

  • Chapter
  • First Online:
Book cover New Computation Methods for Geometrical Optics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 178))

  • 2094 Accesses

Abstract

The automation in optical design work has made variational raytracing to estimate the Jacobian matrix with respect to system variables by using finite difference method [1–14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.G. Wynne, P. Wormell, Lens design by computer. Appl. Opt. 2, 1223–1238 (1963)

    Article  ADS  Google Scholar 

  2. D.P. Fede, Automatic optical design, Appl. Opt. 2, 1209–1226 (1963)

    Google Scholar 

  3. M. Rimmer, Analysis of perturbed lens systems. Appl. Opt. 9, 533–537 (1970)

    Article  ADS  Google Scholar 

  4. H.H. Hopkins, H.J. Tiziani, A theoretical and experimental study of lens centering errors and their influence on optical image quality. Brit. J. Appl. Phys. 17, 33–54 (1966)

    Article  ADS  Google Scholar 

  5. T.B. Andersen, Optical aberration functions: chromatic aberrations and derivatives with respect to refractive indices for symmetrical systems. Appl. Opt. 21, 4040–4044 (1982)

    Article  ADS  Google Scholar 

  6. S.K. Gupta, R. Hradaynath, Angular tolerance on Dove prisms. Appl. Opt. 22, 3146–3147 (1983)

    Article  ADS  Google Scholar 

  7. J.F. Lee, C.Y. Leung, Method of calculating the alignment tolerance of a Porro prism resonator. Appl. Opt. 28, 3691–3697 (1989)

    Article  ADS  Google Scholar 

  8. B.D. Stone, Perturbations of optical systems. J. Opt. Soc. Am. A 14, 2837–2849 (1997)

    Article  ADS  Google Scholar 

  9. D.S. Grey, The inclusion of tolerance sensitivities in the merit function for lens optimization. SPIE 147, 63–65 (1978)

    Article  ADS  Google Scholar 

  10. E.G. Herrera, M. Strojnik, Interferometric tolerance determination for a Dove prism using exact ray trace. Opt. Commun. 281, 897–905 (2008)

    Article  ADS  Google Scholar 

  11. W. Mao, Adjustment of reflecting prisms. Opt. Eng. 34, 79–82 (1995)

    Article  ADS  Google Scholar 

  12. K.N. Chandler, On the effect of small errors in angles of corner-cube reflectors. J. Opt. Soc. Am. 50, 203–206 (1960)

    Article  ADS  Google Scholar 

  13. N. Lin, Orientation conjugation of reflecting prism rotation and second-order approximation of image rotation. Opt. Eng. 33, 2400–2407 (1994)

    Article  ADS  Google Scholar 

  14. E. Gutierrez, M. Strojnik, G. Paez, Tolerance determination for a Dove prism using exact ray trace. Proc. SPIE 6307, 63070K (2006)

    Article  ADS  Google Scholar 

  15. B.D. Stone, Determination of initial ray configurations for asymmetric systems. J. Opt. Soc. Am. A 14, 3415–3429 (1997)

    Article  ADS  Google Scholar 

  16. T. B. Andersen, Optical aberration functions: derivatives with respect to axial distances for symmetrical systems. Appl. Opt. 21, 1817–1823 (1982)

    Google Scholar 

  17. T.B. Andersen, Optical aberration functions: derivatives with respect to surface parameters for symmetrical systems. Appl. Opt. 24, 1122–1129 (1985)

    Article  ADS  Google Scholar 

  18. D.P. Feder, Calculation of an optical merit function and its derivatives with respect to the system parameters. J. Opt. Soc. Am. 47, 913–925 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  19. D.P. Feder, Differentiation of ray-tracing equations with respect to constructional parameters of rotationally symmetric systems. J. Opt. Soc. Am. 58, 1494–1505 (1968)

    Article  ADS  Google Scholar 

  20. O. Stavroudis, A simpler derivation of the formulas for generalized ray tracing. J. Opt. Soc. Am. 66, 1330–1333 (1976)

    Google Scholar 

  21. J. Kross, Differential ray tracing formulae for optical calculations: principles and applications. SPIE Opt. Des. Method Large Opt. 1013, 10–18 (1988)

    Google Scholar 

  22. W. Oertmann, Differential ray tracing formulae; applications especially to aspheric optical systems, SPIE Opt. Des. Method Large Opt., 1013, 20–26 (1988)

    Google Scholar 

  23. P.D. Lin, C.Y. Tsai, Determination of first-order derivatives of skew-ray at aspherical surface. J. Opt. Soc. Am. A 29, 1141–1153 (2012)

    Article  ADS  Google Scholar 

  24. C. Olson, R.N. Youngworth, Alignment analysis of optical systems using derivative information. Proc of SPIE 7068, 1–10 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Psang Dain Lin .

Appendices

Appendix A

The differentiation of \( {}^{0}\overline{\text{A}}_{{\text{i}}} \) shown in Eq. (2.8) with respect to pose variables are given by:

$$ \frac{{\partial \left( {{}^{0}\overline{\text{A}}_{{\text{i}}} } \right)}}{{\partial {\text{t}}_{{\text{ix}}} }} = \left[ {\begin{array}{*{20}c} {{{\partial {\text{I}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{ix}}} } {\partial {\text{t}}_{{\text{ix}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{ix}}} }}} & {{{\partial {\text{J}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{ix}}} } {\partial {\text{t}}_{{\text{ix}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{ix}}} }}} & {{{\partial {\text{K}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{ix}}} } {\partial {\text{t}}_{{\text{ix}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{ix}}} }}} & {{{\partial {\text{t}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{ix}}} } {\partial {\text{t}}_{{\text{ix}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{ix}}} }}} \\ {{{\partial {\text{I}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{iy}}} } {\partial {\text{t}}_{{\text{ix}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{ix}}} }}} & {{{\partial {\text{J}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{iy}}} } {\partial {\text{t}}_{{\text{ix}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{ix}}} }}} & {{{\partial {\text{K}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{iy}}} } {\partial {\text{t}}_{{\text{ix}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{ix}}} }}} & {{{\partial {\text{t}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iy}}} } {\partial {\text{t}}_{{\text{ix}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{ix}}} }}} \\ {{{\partial {\text{I}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{iz}}} } {\partial {\text{t}}_{{\text{ix}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{ix}}} }}} & {{{\partial {\text{J}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{iz}}} } {\partial {\text{t}}_{{\text{ix}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{ix}}} }}} & {{{\partial {\text{K}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{iz}}} } {\partial {\text{t}}_{{\text{ix}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{ix}}} }}} & {{{\partial {\text{t}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iz}}} } {\partial {\text{t}}_{{\text{ix}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{ix}}} }}} \\ 0 & 0 & 0 & 0 \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(A.1)
$$ \frac{{\partial \left( {{}^{0}\overline{\text{A}}_{{\text{i}}} } \right)}}{{\partial {\text{t}}_{{\text{iy}}} }} = \left[ {\begin{array}{*{20}c} {{{\partial {\text{I}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{ix}}} } {\partial {\text{t}}_{{\text{iy}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iy}}} }}} & {{{\partial {\text{J}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{ix}}} } {\partial {\text{t}}_{{\text{iy}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iy}}} }}} & {{{\partial {\text{K}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{ix}}} } {\partial {\text{t}}_{{\text{iy}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iy}}} }}} & {{{\partial {\text{t}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{ix}}} } {\partial {\text{t}}_{{\text{iy}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iy}}} }}} \\ {{{\partial {\text{I}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{iy}}} } {\partial {\text{t}}_{{\text{iy}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iy}}} }}} & {{{\partial {\text{J}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{iy}}} } {\partial {\text{t}}_{{\text{iy}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iy}}} }}} & {{{\partial {\text{K}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{iy}}} } {\partial {\text{t}}_{{\text{iy}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iy}}} }}} & {{{\partial {\text{t}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iy}}} } {\partial {\text{t}}_{{\text{iy}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iy}}} }}} \\ {{{\partial {\text{I}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{iz}}} } {\partial {\text{t}}_{{\text{iy}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iy}}} }}} & {{{\partial {\text{J}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{iz}}} } {\partial {\text{t}}_{{\text{iy}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iy}}} }}} & {{{\partial {\text{K}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{iz}}} } {\partial {\text{t}}_{{\text{iy}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iy}}} }}} & {{{\partial {\text{t}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iz}}} } {\partial {\text{t}}_{{\text{iy}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iy}}} }}} \\ 0 & 0 & 0 & 0 \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(A.2)
$$ \frac{{\partial \left( {{}^{0}\overline{\text{A}}_{{\text{i}}} } \right)}}{{\partial {\text{t}}_{{\text{iz}}} }} = \left[ {\begin{array}{*{20}c} {{{\partial {\text{I}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{ix}}} } {\partial {\text{t}}_{{\text{iz}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iz}}} }}} & {{{\partial {\text{J}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{ix}}} } {\partial {\text{t}}_{{\text{iz}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iz}}} }}} & {{{\partial {\text{K}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{ix}}} } {\partial {\text{t}}_{{\text{iz}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iz}}} }}} & {{{\partial {\text{t}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{ix}}} } {\partial {\text{t}}_{{\text{iz}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iz}}} }}} \\ {{{\partial {\text{I}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{iy}}} } {\partial {\text{t}}_{{\text{iz}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iz}}} }}} & {{{\partial {\text{J}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{iy}}} } {\partial {\text{t}}_{{\text{iz}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iz}}} }}} & {{{\partial {\text{K}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{iy}}} } {\partial {\text{t}}_{{\text{iz}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iz}}} }}} & {{{\partial {\text{t}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iy}}} } {\partial {\text{t}}_{{\text{iz}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iz}}} }}} \\ {{{\partial {\text{I}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{iz}}} } {\partial {\text{t}}_{{\text{iz}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iz}}} }}} & {{{\partial {\text{J}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{iz}}} } {\partial {\text{t}}_{{\text{iz}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iz}}} }}} & {{{\partial {\text{K}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{iz}}} } {\partial {\text{t}}_{{\text{iz}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iz}}} }}} & {{{\partial {\text{t}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iz}}} } {\partial {\text{t}}_{{\text{iz}}} }}} \right. \kern-0pt} {\partial {\text{t}}_{{\text{iz}}} }}} \\ 0 & 0 & 0 & 0 \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(A.3)
$$ \begin{aligned} \frac{{\partial \left( {{}^{0}\overline{\text{A}}_{{\text{i}}} } \right)}}{{\partial \omega_{{\text{ix}}} }} = & \left[ {\begin{array}{*{20}c} {{{\partial {\text{I}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{ix}}} } {\partial \omega_{{\text{ix}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{ix}}} }}} & {{{\partial {\text{J}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{ix}}} } {\partial \omega_{{\text{ix}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{ix}}} }}} & {{{\partial {\text{K}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{ix}}} } {\partial \omega_{{\text{ix}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{ix}}} }}} & {{{\partial {\text{t}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{ix}}} } {\partial \omega_{{\text{ix}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{ix}}} }}} \\ {{{\partial {\text{I}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{iy}}} } {\partial \omega_{{\text{ix}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{ix}}} }}} & {{{\partial {\text{J}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{iy}}} } {\partial \omega_{{\text{ix}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{ix}}} }}} & {{{\partial {\text{K}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{iy}}} } {\partial \omega_{{\text{ix}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{ix}}} }}} & {{{\partial {\text{t}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iy}}} } {\partial \omega_{{\text{ix}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{ix}}} }}} \\ {{{\partial {\text{I}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{iz}}} } {\partial \omega_{{\text{ix}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{ix}}} }}} & {{{\partial {\text{J}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{iz}}} } {\partial \omega_{{\text{ix}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{ix}}} }}} & {{{\partial {\text{K}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{iz}}} } {\partial \omega_{{\text{ix}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{ix}}} }}} & {{{\partial {\text{t}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iz}}} } {\partial \omega_{{\text{ix}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{ix}}} }}} \\ 0 & 0 & 0 & 0 \\ \end{array} } \right] \\ = & \left[ {\begin{array}{*{20}c} 0 & {{\text{C}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{iy}}} {\text{C}}\omega_{{\text{ix}}} + {\text{S}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{ix}}} } & { - {\text{C}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{iy}}} {\text{S}}\omega_{{\text{ix}}} + {\text{S}}\omega_{{\text{iz}}} {\text{C}}\omega_{{\text{ix}}} } & 0 \\ 0 & {{\text{S}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{iy}}} {\text{C}}\omega_{{\text{ix}}} - {\text{C}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{ix}}} } & { - {\text{S}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{iy}}} {\text{S}}\omega_{{\text{ix}}} - {\text{C}}\omega_{{\text{iz}}} {\text{C}}\omega_{{\text{ix}}} } & 0 \\ 0 & {{\text{C}}\omega_{{\text{iy}}} {\text{C}}\omega_{{\text{ix}}} } & { - {\text{C}}\omega_{{\text{iy}}} {\text{S}}\omega_{{\text{ix}}} } & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], \\ \end{aligned} $$
(A.4)
$$ \begin{aligned} \frac{{\partial \left( {{}^{0}\overline{\text{A}}_{{\text{i}}} } \right)}}{{\partial \omega_{{\text{iy}}} }} = & \left[ {\begin{array}{*{20}c} {{{\partial {\text{I}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{ix}}} } {\partial \omega_{{\text{iy}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iy}}} }}} & {{{\partial {\text{J}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{ix}}} } {\partial \omega_{{\text{iy}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iy}}} }}} & {{{\partial {\text{K}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{ix}}} } {\partial \omega_{{\text{iy}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iy}}} }}} & {{{\partial {\text{t}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{ix}}} } {\partial \omega_{{\text{iy}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iy}}} }}} \\ {{{\partial {\text{I}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{iy}}} } {\partial \omega_{{\text{iy}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iy}}} }}} & {{{\partial {\text{J}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{iy}}} } {\partial \omega_{{\text{iy}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iy}}} }}} & {{{\partial {\text{K}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{iy}}} } {\partial \omega_{{\text{iy}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iy}}} }}} & {{{\partial {\text{t}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iy}}} } {\partial \omega_{{\text{iy}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iy}}} }}} \\ {{{\partial {\text{I}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{iz}}} } {\partial \omega_{{\text{iy}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iy}}} }}} & {{{\partial {\text{J}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{iz}}} } {\partial \omega_{{\text{iy}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iy}}} }}} & {{{\partial {\text{K}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{iz}}} } {\partial \omega_{{\text{iy}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iy}}} }}} & {{{\partial {\text{t}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iz}}} } {\partial \omega_{{\text{iy}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iy}}} }}} \\ 0 & 0 & 0 & 0 \\ \end{array} } \right] \\ = &\left[ {\begin{array}{*{20}c} { - {\text{C}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{iy}}} } & {{\text{C}}\omega_{{\text{iz}}} {\text{C}}\omega_{{\text{iy}}} {\text{S}}\omega_{{\text{ix}}} } & {{\text{C}}\omega_{{\text{iz}}} {\text{C}}\omega_{{\text{iy}}} {\text{C}}\omega_{{\text{ix}}} } & 0 \\ { - {\text{S}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{iy}}} } & {{\text{S}}\omega_{{\text{iz}}} {\text{C}}\omega_{{\text{iy}}} {\text{S}}\omega_{{\text{ix}}} } & {{\text{S}}\omega_{{\text{iz}}} {\text{C}}\omega_{{\text{iy}}} {\text{C}}\omega_{{\text{ix}}} } & 0 \\ { - {\text{C}}\omega_{{\text{iy}}} } & { - {\text{S}}\omega_{{\text{iy}}} {\text{S}}\omega_{{\text{ix}}} } & { - {\text{S}}\omega_{{\text{iy}}} {\text{C}}\omega_{{\text{ix}}} } & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], \\ \end{aligned} $$
(A.5)
$$ \begin{aligned} \frac{{\partial \left( {{}^{0}\overline{\text{A}}_{{\text{i}}} } \right)}}{{\partial \omega_{{\text{iz}}} }} = & \left[ {\begin{array}{*{20}c} {{{\partial {\text{I}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{ix}}} } {\partial \omega_{{\text{iz}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iz}}} }}} & {{{\partial {\text{J}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{ix}}} } {\partial \omega_{{\text{iz}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iz}}} }}} & {{{\partial {\text{K}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{ix}}} } {\partial \omega_{{\text{iz}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iz}}} }}} & {{{\partial {\text{t}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{ix}}} } {\partial \omega_{{\text{iz}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iz}}} }}} \\ {{{\partial {\text{I}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{iy}}} } {\partial \omega_{{\text{iz}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iz}}} }}} & {{{\partial {\text{J}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{iy}}} } {\partial \omega_{{\text{iz}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iz}}} }}} & {{{\partial {\text{K}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{iy}}} } {\partial \omega_{{\text{iz}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iz}}} }}} & {{{\partial {\text{t}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iy}}} } {\partial \omega_{{\text{iz}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iz}}} }}} \\ {{{\partial {\text{I}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{iz}}} } {\partial \omega_{{\text{iz}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iz}}} }}} & {{{\partial {\text{J}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{iz}}} } {\partial \omega_{{\text{iz}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iz}}} }}} & {{{\partial {\text{K}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{iz}}} } {\partial \omega_{{\text{iz}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iz}}} }}} & {{{\partial {\text{t}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iz}}} } {\partial \omega_{{\text{iz}}} }}} \right. \kern-0pt} {\partial \omega_{{\text{iz}}} }}} \\ 0 & 0 & 0 & 0 \\ \end{array} } \right] \\ =& \left[ {\begin{array}{*{20}c} { - {\text{S}}\omega_{{\text{iz}}} {\text{C}}\omega_{{\text{iy}}} } & { - {\text{S}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{iy}}} {\text{S}}\omega_{{\text{ix}}} - {\text{C}}\omega_{{\text{iz}}} {\text{C}}\omega_{{\text{ix}}} } & { - {\text{S}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{iy}}} {\text{C}}\omega_{{\text{ix}}} + {\text{C}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{ix}}} } & 0 \\ {{\text{C}}\omega_{{\text{iz}}} {\text{C}}\omega_{{\text{iy}}} } & {{\text{C}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{iy}}} {\text{S}}\omega_{{\text{ix}}} - {\text{S}}\omega_{{\text{iz}}} {\text{C}}\omega_{{\text{ix}}} } & {{\text{C}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{iy}}} {\text{C}}\omega_{{\text{ix}}} + {\text{S}}\omega_{{\text{iz}}} {\text{S}}\omega_{{\text{ix}}} } & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right]. \\ \end{aligned} $$
(A.6)

Appendix B

There are various means of specifying \( {}^{0}\overline{\text{A}}_{{\text{ej}}} \) [e.g., Eqs. (3.29a)–(3.29d)] and \( {}^{ej}\overline{\text{A}}_{{\text{i}}} \) [e.g., Eqs. (3.30a)–(3.30m)] based on different sequences of the rotation and translation operators in Sect. 1.5. However, if \( {}^{0}\overline{\text{A}}_{{\text{ej}}} \) is to be computed using computer code, a decision must be taken as to which form to apply. In the present study, the following formulation is applied:

$$ \begin{aligned} {}^{h}\overline{\text{A}}_{{\text{g}}} = & tran\left( {{\text{t}}_{{\text{x}}} ,{\text{t}}_{{\text{y}}} ,{\text{t}}_{{\text{z}}} } \right)rot\left( {\overline{z} ,\omega_{{\text{z}}} } \right)rot\left( {\overline{y} ,\omega_{{\text{y}}} } \right)rot\left( {\overline{\text{x}} ,\omega_{{\text{x}}} } \right) \\ =& \left[ {\begin{array}{*{20}c} {I_{{\text{x}}} } & {J_{{\text{x}}} } & {K_{{\text{x}}} } & {{\text{t}}_{{\text{x}}} } \\ {I_{{\text{y}}} } & {J_{{\text{y}}} } & {K_{{\text{y}}} } & {{\text{t}}_{{\text{y}}} } \\ {I_{{\text{z}}} } & {J_{{\text{z}}} } & {K_{{\text{z}}} } & {{\text{t}}_{{\text{z}}} } \\ 0 & 0 & 0 & 1 \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {{\text{C}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} } & {{\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{z}}} } & {{\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{z}}} } & {{\text{t}}_{{\text{x}}} } \\ {{\text{C}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} } & {{\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{z}}} + {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} } & { - {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{z}}} + {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} } & {{\text{t}}_{{\text{y}}} } \\ { - {\text{S}}\omega_{{\text{y}}} } & {{\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} } & {{\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} } & {{\text{t}}_{{\text{z}}} } \\ 0 & 0 & 0 & 1 \\ \end{array} } \right], \\ \end{aligned} $$
(B.1)

where \( {}^{h}\overline{\text{A}}_{{\text{g}}} \) can be \( {}^{0}\overline{\text{A}}_{{\text{ej}}} \) or \( {}^{ej}\overline{\text{A}}_{{\text{i}}} \).

In Eqs. (3.29a)–(3.29d) and Eqs. (3.30a)–(3.30m), the arguments in matrices \( {}^{0}\overline{\text{A}}_{{\text{ej}}} \) and \( {}^{ej}\overline{\text{A}}_{{\text{i}}} \) can be written as \( \omega_{{\text{x}}} = {\text{a}}_{0} + \sum\limits_{{\text{v}}} = 1^{41} {{\text{a}}_{{\text{v}}} {\text{x}}_{{\text{v}}} } \), \( \omega_{{\text{y}}} = {\text{b}}_{0} + \sum\limits_{{\text{v}}} = 1^{41} {{\text{b}}_{{\text{v}}} {\text{x}}_{{\text{v}}} } \)and \( \omega_{{\text{z}}} = {\text{c}}_{0} + \sum\limits_{{\text{v}}} = 1^{41} {c_{{\text{v}}} {\text{x}}_{{\text{v}}} } \), respectively, where \( {\text{x}}_{{\text{v}}} \)is the vth component of \( \overline{\text{X}}_{{\text{sys}}} \), and \( {\text{a}}_{{\text{v}}} \), \( {\text{b}}_{{\text{v}}} \) and \( {\text{c}}_{{\text{v}}} \) ({\text{v}} = 1 to {\text{v}} = 41) are known constants. Therefore, \( {{\partial \left( {{}^{h}\overline{\text{A}}_{{\text{g}}} } \right)} \mathord{\left/ {\vphantom {{\partial \left( {{}^{{{\text{h}}}}\overline{\text{A}}_{{\text{g}}} } \right)} {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }} \) (where \( {}^{{\text{h}}}\overline{\text{A}}_{{\text{g}}} \) can be \( {}^{0}\overline{\text{A}}_{{\text{ej}}} \) or \( {}^{ej}\overline{\text{A}}_{{\text{i}}} \)) can be determined directly by differentiating Eq. (B.1) with respect to \( {\text{x}}_{{\text{v}}} \) to give

$$ \frac{{\partial \left( {{}^{h}\overline{\text{A}}_{{\text{g}}} } \right)}}{{\partial {\text{x}}_{{\text{v}}} }} = \left[ {\begin{array}{*{20}c} {{{\partial {\text{I}}_{{\text{x}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{x}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }}} & {{{\partial {\text{J}}_{{\text{x}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{x}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }}} & {{{\partial {\text{K}}_{{\text{x}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{x}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }}} & {{{\partial {\text{t}}_{{\text{x}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{x}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }}} \\ {{{\partial {\text{I}}_{{\text{y}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{y}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }}} & {{{\partial {\text{J}}_{{\text{y}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{y}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }}} & {{{\partial {\text{K}}_{{\text{y}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{y}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }}} & {{{\partial {\text{t}}_{{\text{y}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{y}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }}} \\ {{{\partial {\text{I}}_{{\text{z}}} } \mathord{\left/ {\vphantom {{\partial {\text{I}}_{{\text{z}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }}} & {{{\partial {\text{J}}_{{\text{z}}} } \mathord{\left/ {\vphantom {{\partial {\text{J}}_{{\text{z}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }}} & {{{\partial {\text{K}}_{{\text{z}}} } \mathord{\left/ {\vphantom {{\partial {\text{K}}_{{\text{z}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }}} & {{{\partial {\text{t}}_{{\text{z}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{z}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }}} \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(B.2)

where

$$ \frac{{\partial {\text{I}}_{{\text{x}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = - {\text{b}}_{{\text{v}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}} {\text{C}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} , $$
(B.3)
$$ \frac{{\partial {\text{I}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = - {\text{b}}_{{\text{v}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} + {\text{c}}_{{\text{v}}} {\text{C}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} , $$
(B.4)
$$ \frac{{\partial {\text{I}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = - {\text{b}}_{{\text{v}}} {\text{S}}\omega_{{\text{y}}} , $$
(B.5)
$$ \frac{{\partial {\text{J}}_{{\text{x}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = {\text{a}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} + {\text{b}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} + {\text{a}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{z}}} , $$
(B.6)
$$ \frac{{\partial {\text{J}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = {\text{a}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} + {\text{b}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} + {\text{c}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - {\text{a}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{z}}} , $$
(B.7)
$$ \frac{{\partial {\text{J}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = {\text{a}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} - {\text{b}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} , $$
(B.8)
$$ \frac{{\partial {\text{K}}_{{\text{x}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = - {\text{a}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} + {\text{b}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} - {\text{a}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{z}}} , $$
(B.9)
$$ \frac{{\partial {\text{K}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = - {\text{a}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} + {\text{b}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} + {\text{c}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - {\text{a}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{z}}} + {\text{c}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{z}}} , $$
(B.10)
$$ \frac{{\partial {\text{K}}_{{\text{z}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = - {\text{a}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} - {\text{b}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} , $$
(B.11)
$$ \frac{{\partial {\text{t}}_{{\text{x}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = \frac{{\partial {\text{t}}_{{\text{x}}} }}{{\partial {\text{x}}_{{\text{v}}} }}, $$
(B.12)
$$ \frac{{\partial {\text{t}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = \frac{{\partial {\text{t}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{v}}} }}, $$
(B.13)
$$ \frac{{\partial {\text{t}}_{{\text{z}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = \frac{{\partial {\text{t}}_{{\text{z}}} }}{{\partial {\text{x}}_{{\text{v}}} }}. $$
(B.14)

Note that Eqs. (B.12), (B.13) and (B.14) simply indicate that \( {{\partial {\text{t}}_{{\text{x}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{x}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }} \), \( {{\partial {\text{t}}_{{\text{y}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{y}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }} \)and \( {{\partial {\text{t}}_{{\text{z}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{z}}} } {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }} \) can be obtained by directly differentiating their corresponding expressions (e.g., \( {{\partial {\text{t}}_{{\text{x}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{x}}} } {\partial x_{24} }}} \right. \kern-0pt} {\partial x_{24} }} = 0.5 \) for \( {}^{0}\overline{\text{A}}_{e2} \) from Eq. (3.29b) and \( {{\partial {\text{t}}_{{\text{y}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{y}}} } {\partial x_{14} }}} \right. \kern-0pt} {\partial x_{14} }} = {1 \mathord{\left/ {\vphantom {1 {\kappa_{1}^{2} }}} \right. \kern-0pt} {\kappa_{1}^{2} }} \) for \( {}^{e1}\overline{\text{A}}_{2} \) from Eq. (3.30b) for system in Fig. 3.12).

Having obtained \( {}^{0}\overline{\text{A}}_{{\text{ej}}} \), \( {}^{ej}\overline{\text{A}}_{{\text{i}}} \), \( {{\partial \left( {{}^{0}\overline{\text{A}}_{{\text{ej}}} } \right)} \mathord{\left/ {\vphantom {{\partial \left( {{}^{0}\overline{\text{A}}_{{\text{ej}}} } \right)} {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }} \) and \( {{\partial \left( {{}^{ej}\overline{\text{A}}_{{\text{i}}} } \right)} \mathord{\left/ {\vphantom {{\partial \left( {{}^{ej}\overline{\text{A}}_{{\text{i}}} } \right)} {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }} \), one can compute \( {{\partial \left( {{}^{0}\overline{\text{A}}_{{\text{i}}} } \right)} \mathord{\left/ {\vphantom {{\partial \left( {{}^{0}\overline{\text{A}}_{{\text{i}}} } \right)} {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }} \) from Eq. (5.85) and determine \( {{\partial {\text{t}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{ix}}} } {\partial \overline{\text{X}}_{{\text{sys}}} }}} \right. \kern-0pt} {\partial \overline{\text{X}}_{{\text{sys}}} }} \), \( {{\partial {\text{t}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iy}}} } {\partial \overline{\text{X}}_{{\text{sys}}} }}} \right. \kern-0pt} {\partial \overline{\text{X}}_{{\text{sys}}} }} \), \( {{\partial {\text{t}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial {\text{t}}_{{\text{iz}}} } {\partial \overline{\text{X}}_{{\text{sys}}} }}} \right. \kern-0pt} {\partial \overline{\text{X}}_{{\text{sys}}} }} \), \( {{\partial \omega_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial \omega_{{\text{ix}}} } {\partial \overline{\text{X}}_{{\text{sys}}} }}} \right. \kern-0pt} {\partial \overline{\text{X}}_{{\text{sys}}} }} \), \( {{\partial \omega_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial \omega_{{\text{iy}}} } {\partial \overline{\text{X}}_{{\text{sys}}} }}} \right. \kern-0pt} {\partial \overline{\text{X}}_{{\text{sys}}} }} \), and \( {{\partial \omega_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial \omega_{{\text{iz}}} } {\partial \overline{\text{X}}_{{\text{sys}}} }}} \right. \kern-0pt} {\partial \overline{\text{X}}_{{\text{sys}}} }} \) accordingly.

Appendix C

Differentiating \( {{\partial \left( {{}^{h}\overline{\text{A}}_{{\text{g}}} } \right)} \mathord{\left/ {\vphantom {{\partial \left( {{}^{h}\overline{\text{A}}_{{\text{g}}} } \right)} {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }} \) in Eq. (B.2) (where \( {}^{h}\overline{\text{A}}_{{\text{g}}} \) can be \( {}^{0}\overline{\text{A}}_{{\text{ej}}} \) or \( {}^{ej}\overline{\text{A}}_{{\text{i}}} \)) with respect to \( {\text{x}}_{{\text{w}}} \) in \( \overline{\text{X}}_{{\text{sys}}} \) yields the following:

$$ \frac{{\partial^{2} \left( {{}^{h}\overline{\text{A}}_{{\text{g}}} } \right)}}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = \left[ {\begin{array}{*{20}c} {{{\partial^{2} {\text{I}}_{{\text{x}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{I}}_{{\text{x}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} & {{{\partial^{2} {\text{J}}_{{\text{x}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{J}}_{{\text{x}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} & {{{\partial^{2} {\text{K}}_{{\text{x}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{K}}_{{\text{x}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} & {{{\partial^{2} {\text{t}}_{{\text{x}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{t}}_{{\text{x}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \\ {{{\partial^{2} {\text{I}}_{{\text{y}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{I}}_{{\text{y}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} & {{{\partial^{2} {\text{J}}_{{\text{y}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{J}}_{{\text{y}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} & {{{\partial^{2} {\text{K}}_{{\text{y}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{K}}_{{\text{y}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} & {{{\partial^{2} {\text{t}}_{{\text{y}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{t}}_{{\text{y}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \\ {{{\partial^{2} {\text{I}}_{{\text{z}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{I}}_{{\text{z}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} & {{{\partial^{2} {\text{J}}_{{\text{z}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{J}}_{{\text{z}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} & {{{\partial^{2} {\text{K}}_{{\text{z}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{K}}_{{\text{z}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} & {{{\partial^{2} {\text{t}}_{{\text{z}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{t}}_{{\text{z}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(C.1)

where

$$ \frac{{\partial^{2} {\text{I}}_{{\text{x}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = - {\text{b}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} + 2{\text{b}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} , $$
(C.2)
$$ \frac{{\partial^{2} {\text{I}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = - {\text{b}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} - 2{\text{b}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} , $$
(C.3)
$$ \frac{{\partial^{2} {\text{I}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = - {\text{b}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{y}}} , $$
(C.4)
$$ \begin{aligned} \frac{{\partial^{2} {\text{J}}_{{\text{x}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = & - {\text{a}}_{{\text{v}}}^{2} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} + 2{\text{a}}_{{\text{v}}} {\text{b}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - 2{\text{a}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} - {\text{b}}_{{\text{v}}}^{2} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} \\ & - 2{\text{b}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}}^{2} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} + {\text{a}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{z}}} + 2{\text{a}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{z}}} + {\text{c}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{z}}} , \\ \end{aligned} $$
(C.5)
$$ \begin{aligned} \frac{{\partial^{2} {\text{J}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = & - {\text{a}}_{{\text{v}}}^{2} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} + 2{\text{a}}_{{\text{v}}} {\text{b}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} + 2{\text{a}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - {\text{b}}_{{\text{v}}}^{2} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} \\ & + 2{\text{b}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}}^{2} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} - {\text{a}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{z}}} + 2{\text{a}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{z}}} , \\ \end{aligned} $$
(C.6)
$$ \frac{{\partial^{2} {\text{J}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = - {\text{a}}_{{\text{v}}}^{2} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} - 2{\text{a}}_{{\text{v}}} {\text{b}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} - {\text{b}}_{{\text{v}}}^{2} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} , $$
(C.7)
$$ \begin{aligned} \frac{{\partial^{2} {\text{K}}_{{\text{x}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = & - {\text{a}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - 2{\text{a}}_{{\text{v}}} {\text{b}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} + 2{\text{a}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} - {\text{b}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} \\ & - 2{\text{b}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} + {\text{a}}_{{\text{v}}}^{2} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{z}}} - 2{\text{a}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{z}}} + {\text{c}}_{{\text{v}}}^{2} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{z}}} , \\ \end{aligned} $$
(C.8)
$$ \begin{aligned} \frac{{\partial^{2} {\text{K}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = & - {\text{a}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} - 2{\text{a}}_{{\text{v}}} {\text{b}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} - 2{\text{a}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - {\text{b}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} \\ & + 2{\text{b}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} {\text{C}}\omega_{{\text{z}}} - {\text{c}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} {\text{S}}\omega_{{\text{z}}} + {\text{a}}_{{\text{v}}}^{2} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{z}}} + 2{\text{a}}_{{\text{v}}} {\text{c}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{z}}} + {\text{c}}_{{\text{v}}}^{2} {\text{S}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{z}}} , \\ \end{aligned} $$
(C.9)
$$ \frac{{\partial^{2} {\text{K}}_{{\text{z}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = - {\text{a}}_{{\text{v}}} {\text{a}}_{{\text{v}}} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} + 2{\text{a}}_{{\text{v}}} {\text{b}}_{{\text{v}}} {\text{S}}\omega_{{\text{x}}} {\text{S}}\omega_{{\text{y}}} - {\text{b}}_{{\text{v}}}^{2} {\text{C}}\omega_{{\text{x}}} {\text{C}}\omega_{{\text{y}}} , $$
(C.10)
$$ \frac{{\partial^{2} {\text{t}}_{{\text{x}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = \frac{{\partial^{2} {\text{t}}_{{\text{x}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}, $$
(C.11)
$$ \frac{{\partial^{2} {\text{t}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = \frac{{\partial^{2} {\text{t}}_{{\text{y}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}, $$
(C.12)
$$ \frac{{\partial^{2} {\text{t}}_{{\text{z}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = \frac{{\partial^{2} {\text{t}}_{{\text{z}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}. $$
(C.13)

Note that Eqs. (C.11), (C.12) and (C.13) simply indicate that \( {{\partial^{2} {\text{t}}_{{\text{x}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{t}}_{{\text{x}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} \), \( {{\partial^{2} {\text{t}}_{{\text{y}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{t}}_{{\text{y}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} \)and \( {{\partial^{2} {\text{t}}_{{\text{z}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{t}}_{{\text{z}}} } {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} \) can be obtained by directly differentiating their corresponding expressions (e.g., \( {{\partial^{2} {\text{t}}_{{\text{y}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{t}}_{{\text{y}}} } {\partial x_{14}^{2} }}} \right. \kern-0pt} {\partial x_{14}^{2} }} = {{ - 2} \mathord{\left/ {\vphantom {{ - 2} {\kappa_{1}^{3} }}} \right. \kern-0pt} {\kappa_{1}^{3} }} \) for \( {}^{{\rm{e}}1}\overline{\text{A}}_{2} \) from Eq. (3.30b) for system in Fig. 3.12). Having obtained \( {}^{0}\overline{\text{A}}_{{\text{ej}}} \), \( {}^{ej}\overline{\text{A}}_{{\text{i}}} \), \( {{\partial \left( {{}^{0}\overline{\text{A}}_{{\text{ej}}} } \right)} \mathord{\left/ {\vphantom {{\partial \left( {{}^{0}\overline{\text{A}}_{{\text{ej}}} } \right)} {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }} \), \( {{\partial \left( {{}^{ej}\overline{\text{A}}_{{\text{i}}} } \right)} \mathord{\left/ {\vphantom {{\partial \left( {{}^{ej}\overline{\text{A}}_{{\text{i}}} } \right)} {\partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{v}}} }} \), \( {{\partial^{2} \left( {{}^{0}\overline{\text{A}}_{{\text{ej}}} } \right)} \mathord{\left/ {\vphantom {{\partial^{2} \left( {{}^{0}\overline{\text{A}}_{{\text{ej}}} } \right)} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} \)and \( {{\partial^{2} \left( {{}^{ej}\overline{\text{A}}_{{\text{i}}} } \right)} \mathord{\left/ {\vphantom {{\partial^{2} \left( {{}^{ej}\overline{\text{A}}_{{\text{i}}} } \right)} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} \), one can compute \( {{\partial^{2} \left( {{}^{0}\overline{\text{A}}_{{\text{i}}} } \right)} \mathord{\left/ {\vphantom {{\partial^{2} \left( {{}^{0}\overline{\text{A}}_{{\text{i}}} } \right)} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right. \kern-0pt} {\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} \) from Eq. (5.108) and then determine \( {{\partial^{2} {\text{t}}_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{t}}_{{\text{ix}}} } {\partial \overline{\text{X}}_{{\text{sys}}}^{2} }}} \right. \kern-0pt} {\partial \overline{\text{X}}_{{\text{sys}}}^{2} }} \), \( {{\partial^{2} {\text{t}}_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{t}}_{{\text{iy}}} } {\partial \overline{\text{X}}_{{\text{sys}}}^{2} }}} \right. \kern-0pt} {\partial \overline{\text{X}}_{{\text{sys}}}^{2} }} \), \( {{\partial^{2} {\text{t}}_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial^{2} {\text{t}}_{{\text{iz}}} } {\partial \overline{\text{X}}_{{\text{sys}}}^{2} }}} \right. \kern-0pt} {\partial \overline{\text{X}}_{{\text{sys}}}^{2} }} \), \( {{\partial^{2} \omega_{{\text{ix}}} } \mathord{\left/ {\vphantom {{\partial^{2} \omega_{{\text{ix}}} } {\partial \overline{\text{X}}_{{\text{sys}}}^{2} }}} \right. \kern-0pt} {\partial \overline{\text{X}}_{{\text{sys}}}^{2} }} \), \( {{\partial^{2} \omega_{{\text{iy}}} } \mathord{\left/ {\vphantom {{\partial^{2} \omega_{{\text{iy}}} } {\partial \overline{\text{X}}_{{\text{sys}}}^{2} }}} \right. \kern-0pt} {\partial \overline{\text{X}}_{{\text{sys}}}^{2} }} \), and \( {{\partial^{2} \omega_{{\text{iz}}} } \mathord{\left/ {\vphantom {{\partial^{2} \omega_{{\text{iz}}} } {\partial \overline{\text{X}}_{{\text{sys}}}^{2} }}} \right. \kern-0pt} {\partial \overline{\text{X}}_{{\text{sys}}}^{2} }} \) accordingly.

Appendix D

$$ \frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = \frac{{{\text{G}}_{{\text{i}}} }}{{{\text{F}}_{{\text{i}}} }}, $$
(D.1)

where

$$ {\text{F}}_{{\text{i}}} = {\text{I}}_{{\text{ix}}}^{2} + I_{{\text{iy}}}^{2} , $$
(D.1a)
$$ {\text{G}}_{{\text{i}}} = {\text{I}}_{{\text{ix}}} \frac{{\partial {\text{I}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{v}}} }} - {\text{I}}_{{\text{iy}}} \frac{{\partial {\text{I}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{v}}} }}. $$
(D.1b)
$$ \frac{{\partial \omega_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = \frac{{\text{G}}_{{\text{i}}} + {\text{H}}_{{\text{i}}} }{{{\text{F}}_{{\text{i}}} }}, $$
(D.2)

in which

$$ {\text{F}}_{{\text{i}}} = {\text{I}}_{{\text{iz}}}^{2} + \left( {I_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} + I_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right)^{2} , $$
(D.2a)
$$ {\text{G}}_{{\text{i}}} = {\text{I}}_{{\text{iz}}} \left[ {( - I_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} + I_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} )\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{v}}} }} + (\frac{{\partial {\text{I}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{v}}} }}{\text{C}}\omega_{{\text{iz}}} + \frac{{\partial {\text{I}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{v}}} }}{\text{S}}\omega_{{\text{iz}}} )} \right], $$
(D.2b)
$$ {\text{H}}_{{\text{i}}} = - \left( {I_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} + I_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right)\frac{{\partial {\text{I}}_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{v}}} }}. $$
(D.2c)
$$ \frac{{\partial \omega_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{v}}} }} = \frac{{{\text{G}}_{{\text{i}}} {\text{H}}_{{\text{i}}} - U_{{\text{i}}} Q_{{\text{i}}} }}{{{\text{F}}_{{\text{i}}} }}, $$
(D.3)

where

$$ {\text{F}}_{{\text{i}}} = \left( {K_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} - K_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} } \right)^{2} + \left( { - J_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} + J_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} } \right)^{2} , $$
(D.3a)
$$ {\text{G}}_{{\text{i}}} = - \text{J}_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} + \text{J}_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} , $$
(D.3b)
$$ {\text{H}}_{{\text{i}}} = \left( {K_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} + K_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right)\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{v}}} }} + \left( {{\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{K}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{v}}} }} - {\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{K}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{v}}} }}} \right), $$
(D.3c)
$$ U_{{\text{i}}} = K_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} - K_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} , $$
(D.3d)
$$ Q_{{\text{i}}} = \left( { - J_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} - J_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right)\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{v}}} }} + \left( { - {\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{J}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{v}}} }} + {\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{J}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{v}}} }}} \right). $$
(D.3e)
$$ \frac{{\partial^{2} \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = \frac{{{\text{F}}_{{\text{i}}} \frac{{\partial {\text{G}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} - {\text{G}}_{{\text{i}}} \frac{{\partial {\text{F}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }}}}{{{\text{F}}_{{\text{i}}}^{2} }}, $$
(D.4)

where \( {\text{F}}_{{\text{i}}} \),\( {\text{G}}_{{\text{i}}} \) are respectively given in Eqs. (D.1a), (D.1b) in this appendix, and

$$ \frac{{\partial {\text{F}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} = 2\left( {\text{I}_{{\text{ix}}} \frac{{\partial {\text{I}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + \text{I}_{{\text{iy}}} \frac{{\partial {\text{I}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} }}} \right), $$
(D.4a)
$$\frac{{\partial {\text{G}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} = {\text{I}}_{{\text{ix}}} \frac{{\partial^{2} {\text{I}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} - \text{I}_{{\text{iy}}} \frac{{\partial^{2} {\text{I}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} + \frac{{\partial {\text{I}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} }}\frac{{\partial {\text{I}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{v}}} }} - \frac{{\partial {\text{I}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} }}\frac{{\partial {\text{I}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{v}}} }}, $$
(D.4b)
$$ \frac{{\partial^{2} \omega_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = \frac{{{\text{F}}_{{\text{i}}} \left( {\frac{{\partial {\text{G}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + \frac{{\partial {\text{H}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }}} \right) - \left( {{\text{G}}_{{\text{i}}} + {\text{H}}_{{\text{i}}} } \right)\frac{{\partial {\text{F}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }}}}{{{\text{F}}_{{\text{i}}}^{2} }}, $$
(D.5)

where \( {\text{F}}_{{\text{i}}} \), \( {\text{G}}_{{\text{i}}} \), \( {\text{H}}_{{\text{i}}} \) are respectively given in Eqs. (D.2a), (D.2b), (D.2c) in this appendix, and

$$\frac{{\partial {\text{F}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} = 2I_{{\text{iz}}} \frac{{\partial {\text{I}}_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + 2\left( {\text{I}_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} + \text{I}_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right)\left[ {\left( { - \text{I}_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} + \text{I}_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} )\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + ({\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{I}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + {\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{I}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} }}} \right)} \right], $$
(D.5a)
$$ \begin{aligned} \frac{{\partial {\text{G}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} = & \frac{{\partial {\text{I}}_{{\text{iz}}} }} {{\partial {\text{x}}_{{\text{w}}} }} \left[ {\left( { - \text{I}_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} + \text{I}_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} } \right) \frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{v}}} }} + \left( {{\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{I}}_{{\text{ix}}} }} {{\partial {\text{x}}_{{\text{v}}} }} + {\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{I}}_{{\text{iy}}} }} {{\partial {\text{x}}_{{\text{v}}} }}} \right)} \right] \\ & + \text{I}_{{\text{iz}}} \left[ {\left( { - {\text{I}}_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} - \text{I}_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right) \frac{{\partial \omega_{{\text{iz}}} }} {{\partial {\text{x}}_{{\text{w}}} }} \frac{{\partial \omega_{{\text{iz}}} }} {{\partial {\text{x}}_{{\text{v}}} }} + \left( { - {\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{I}}_{{\text{ix}}} }} {{\partial {\text{x}}_{{\text{w}}} }} + {\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{I}}_{{\text{iy}}} }} {{\partial {\text{x}}_{{\text{w}}} }}} \right) \frac{{\partial \omega_{{\text{iz}}} }} {{\partial {\text{x}}_{{\text{v}}} }} + \left( { - \text{I}_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} + {\text{I}}_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} } \right) \frac{{\partial^{2} \omega_{{\text{iz}}} }} {{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} }\right. \\ & \left. + \left( { - {\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{I}}_{{\text{ix}}} }} {{\partial {\text{x}}_{{\text{v}}} }} + {\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{I}}_{{\text{iy}}} }} {{\partial {\text{x}}_{{\text{v}}} }}} \right) \frac{{\partial \omega_{{\text{iz}}} }} {{\partial {\text{x}}_{{\text{w}}} }} + \left( {{\text{C}}\omega_{{\text{iz}}} \frac{{\partial^{2} {\text{I}}_{{\text{ix}}} }} {{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} + {\text{S}}\omega_{{\text{iz}}} \frac{{\partial^{2} {\text{I}}_{{\text{iy}}} }} {{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right) \right], \\ \end{aligned} $$
(D.5b)
$$ \frac{{\partial {\text{H}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} = - \left( {\text{I}_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} + \text{I}_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right)\frac{{\partial^{2} {\text{I}}_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} - \left( { - \text{I}_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} + \text{I}_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} } \right)\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} }}\frac{{\partial {\text{I}}_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{v}}} }} - \left( {{\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{I}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + {\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{I}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} }}} \right)\frac{{\partial {\text{I}}_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{v}}} }}. $$
(D.5c)
$$ \frac{{\partial^{2} \omega_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} = \frac{{{\text{F}}_{{\text{i}}} \left[ {{\text{H}}_{{\text{i}}} \frac{{\partial {\text{G}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + {\text{G}}_{{\text{i}}} \frac{{\partial {\text{H}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} - \left( {Q_{{\text{i}}} \frac{{\partial U_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + \text{U}_{{\text{i}}} \frac{{\partial Q_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }}} \right)} \right] - \left( {{\text{G}}_{{\text{i}}} {\text{H}}_{{\text{i}}} - U_{{\text{i}}} Q_{{\text{i}}} } \right)\frac{{\partial {\text{F}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }}}}{{{\text{F}}_{{\text{i}}}^{2} }}, $$
(D.6)

where \( {\text{F}}_{{\text{i}}} \), \( {\text{G}}_{{\text{i}}} \), \( {\text{H}}_{{\text{i}}} \), \( \text{U}_{{\text{i}}} \), \( Q_{{\text{i}}} \) are respectively given in Eqs. (D.3a), (D.3b), (D.3c), (D.3d), (D.3e) in this appendix, and

$$ \begin{aligned} \frac{{\partial {\text{F}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} = & 2\left( {K_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} - K_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} } \right)\left[ {\left( {K_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} + K_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right)\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + \left( {{\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{K}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} }} - {\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{K}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} }}} \right)} \right] \\ & + 2\left( { - J_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} + J_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} } \right)\left[ {\left( { - J_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} - J_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right)\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + \left( { - {\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{J}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + {\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{J}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} }}} \right)} \right], \\ \end{aligned} $$
(D.6a)
$$ \frac{{\partial {\text{G}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} = \left( { - J_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} - J_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right)\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} }} - {\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{J}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + {\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{J}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} }}, $$
(D.6b)
$$ \begin{aligned} \frac{{\partial {\text{H}}_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} = & \left( {{\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{K}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + {\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{K}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} }}} \right)\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{v}}} }} + \left( { - K_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} + K_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} } \right)\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} }}\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{v}}} }} + \left( {K_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} + K_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right)\frac{{\partial^{2} \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} \\ & + \left( {{\text{S}}\omega_{{\text{iz}}} \frac{{\partial^{2} {\text{K}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} - {\text{C}}\omega_{{\text{iz}}} \frac{{\partial^{2} {\text{K}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right) + \left( {{\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{K}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{v}}} }} + {\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{K}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{v}}} }}} \right)\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} }}, \\ \end{aligned} $$
(D.6c)
$$ \frac{{\partial U_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} = \left( {K_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} + K_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right)\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + {\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{K}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} }} - {\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{K}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} }}, $$
(D.6d)
$$ \begin{aligned} \frac{{\partial Q_{{\text{i}}} }}{{\partial {\text{x}}_{{\text{w}}} }} = & \left( { - J_{{\text{ix}}} {\text{C}}\omega_{{\text{iz}}} - J_{{\text{iy}}} {\text{S}}\omega_{{\text{iz}}} } \right)\frac{{\partial^{2} \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} + \left( {J_{{\text{ix}}} {\text{S}}\omega_{{\text{iz}}} - J_{{\text{iy}}} {\text{C}}\omega_{{\text{iz}}} } \right)\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} }}\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{v}}} }} \\ & - \left( {{\text{C}}\omega_{{\text{iz}}} \frac{{\partial {\text{J}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{v}}} }} + {\text{S}}\omega_{{\text{iz}}} \frac{{\partial {\text{J}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{v}}} }}} \right)\frac{{\partial \omega_{{\text{iz}}} }}{{\partial {\text{x}}_{{\text{w}}} }} + \left( { - {\text{S}}\omega_{{\text{iz}}} \frac{{\partial^{2} {\text{J}}_{{\text{ix}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }} + {\text{C}}\omega_{{\text{iz}}} \frac{{\partial^{2} {\text{J}}_{{\text{iy}}} }}{{\partial {\text{x}}_{{\text{w}}} \partial {\text{x}}_{{\text{v}}} }}} \right). \\ \end{aligned} $$
(D.6e)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lin, P.D. (2014). The Jacobian Matrix of a Ray with Respect to System Variable Vector. In: New Computation Methods for Geometrical Optics. Springer Series in Optical Sciences, vol 178. Springer, Singapore. https://doi.org/10.1007/978-981-4451-79-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-79-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4451-78-9

  • Online ISBN: 978-981-4451-79-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics