Skip to main content

Electrical Conductivity of Filled Polybenzoxazines

  • Chapter
  • First Online:
Book cover Alloys and Composites of Polybenzoxazines

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1032 Accesses

Abstract

As similar to other polymeric materials, polybenzoxazines (PBz) in nature exhibit the insulative characteristics. In order to extend the range of PBz to suit for various applications (such as electrostatic materials, conductive adhesives, etc.), the modification of the polymer has been made. The practical and low-cost method is compositing the polymer with electrically conductive filler. In this chapter, the composite systems of PBzs filled with conductive fillers (such as inherently conductive polymer, carbon-based filler, and metallic filler) were reviewed and compared with some composite systems (i.e., epoxy and phenolic resins). The theoretical concept of electrical conductivity, the inherently conductive polymer and the potential applications of the composites were also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trost T (2006) Electrostatic discharge (ESD)—facts and faults—a review. (A 1995 article in) Packag Technol Sci 8(5):231–247

    Article  Google Scholar 

  2. Kimura H, Ohtsuka K, Matsumoto A (2011) Curing reaction of bisphenol-A based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin. Express polym lett 5(12):1113–1122

    Article  CAS  Google Scholar 

  3. ESD-ADV 1.0-1994, Glossary of terms, ESD Association, Rome, NY

    Google Scholar 

  4. Al-Saleh HM, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47:2–22

    Article  CAS  Google Scholar 

  5. Amarasekera J (2005) Conductive plastics for electrical and electronic applications. Reinf Plast 49(8):38–41

    Article  Google Scholar 

  6. Markarian J (2005) Increased demands in electronics drive additive developments in conductivity. Plast Addit Compd 7(1):26–30

    Article  Google Scholar 

  7. Das NC, Yamazaki S, Hikosaka M, Chaki TK, Khastgir D, Chakraborty A (2005) Electrical conductivity and electromagnetic interference shielding effectiveness of polyaniline-ethylene vinyl acetate composites. Polym Int 54(2):256–259

    Article  CAS  Google Scholar 

  8. Huang JC (1995) EMI shielding plastics: a review. Adv Polym Technol 14(2):137–150

    Article  CAS  Google Scholar 

  9. Wilney KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32(4):314–319

    Article  Google Scholar 

  10. Hussain M, Choa Y-H, Niihar K (2001) Fabrication process and electrical behavior of novel pressure-sensitive composites. Composites Part A 32:1690–1696

    Article  Google Scholar 

  11. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588

    Article  Google Scholar 

  12. Stauffer D (1987) Introduction to percolation theory. Talyor and Francis, London 89

    Google Scholar 

  13. Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) Carbon based conductive polymer composites. J Mater Sci 42:3408–3418

    Article  CAS  Google Scholar 

  14. Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K (1982) Electrical conductivity of carbon-polymer composites as a function of carbon content. J Mater Sci 17:1610–1616

    Article  CAS  Google Scholar 

  15. Kitazaki Y, Hata T (1972) J Adhesion Soc Jpn 8(3):131–137

    Google Scholar 

  16. Johnson KL, Kendall K, Robert AD (1971) Surface energy and the elastic solids. Proc R Soc London 324:301–313

    Article  CAS  Google Scholar 

  17. Sau KP, Chaki TK, Khastgir D (1997) Conductive rubber composites from different blends of ethylene-propylene-diene rubber and nitrile rubber. J Mater Sci 32:5717–5724

    Article  CAS  Google Scholar 

  18. Sau KP, Chaki TK, Khastgir D (1998) Carbon fibre filled conductive composites based on nitrile rubber (NBR), ethylene propylene diene rubber (EPDM) and their blend. Polymer 39:6461–6471

    Article  CAS  Google Scholar 

  19. Wallace GG, Spinks GM, Kane-Maguire LP, Teasdale PR (2009) Conductive electroactive polymers: intelligent polymer systems. CRC Press, U. S. A

    Google Scholar 

  20. Chandrasekhar P (2002) Conducting polymers, fundamentals and applications: a practical approach. Kluwer Academic Publishers, Boston

    Google Scholar 

  21. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783

    Article  CAS  Google Scholar 

  22. Bhadra S, Singha NK, Khastgir D (2006) Polyaniline by new miniemulsion polymerization and the effect of reducing agent on conductivity. Synth Met 156:1148–1154

    Google Scholar 

  23. Bhadra S, Chattopadhyay S, Singha Nk, Khastgir D (2007) effect of different reaction parameters on the conductivity and dielectric properties of polyaniline synthesized electrochemically and modeling of conductivity against reaction parameters through regression analysis J Polym Sci Polym Phys 45:2046–2059

    Google Scholar 

  24. Bhadra S, Singha NK, Khastgir D (2007) Dual functionality of PTSA as electrolyte and dopant in the electrochemical synthesis of polyaniline, and its effect on electrical properties. Polym Int 56:919–927

    Article  CAS  Google Scholar 

  25. Bhadra S, Singha NK, Khastgir D (2007) Electrochemical synthesis of polyaniline and its comparison with chemically synthesized polyaniline. J Appl Polym Sci 104:1900–1904

    Article  CAS  Google Scholar 

  26. Bhadra S, Khastgir D (2007) Degradation and stability of polyaniine on exposure to electron beam irradiation (structure-property relationship). Polym Degrad Stab 92:1824–1832

    Article  CAS  Google Scholar 

  27. MacDiarmid AG (1997) Polyaniline and polypyrrole: where are we headed. Synth Met 84:27–34

    Article  CAS  Google Scholar 

  28. Tiptipakorn S, Suwanmala P, Hemvichian K, Pornputtanakul Y (2012) Effects of electron beam on irradiated polyimide/polyaniline composites. Adv Mat Res 550–553:861–864

    Article  Google Scholar 

  29. Tiptipakorn S, Duangchan A, Pornputtanakul Y, Rimdusit S (2012) Thermal characterization of polybenzoxazine/polyaniline nanocomposites. Proceeding in pure and applied chemistry international conference 2012 (PACCON2012):1653–1655

    Google Scholar 

  30. Rimdusit S, Punson K, Dueramae I, Somwangthanroj A, Tiptipakorn S (2011) Rheological and thermomechanical characterizations of fumed silica-filled polybenzoxazine nanocomposites. Eng J 15:27–38

    Article  Google Scholar 

  31. Ho KS (2002) Effect of phenolic based polymeric secondary dopants on polyaniline. Synth Met 126:151–158

    Article  CAS  Google Scholar 

  32. Jia W, Tchoudakov R, Segal E, Joseph R, Narkis M, Siegmann A (2003) Electrically conductive composites based on epoxy resin with polyaniline-DBSA fillers. Synth Met 132:269–278

    Article  CAS  Google Scholar 

  33. Jia QM, Li JB, Wang LF, Zhu JW, Zheng M (2007) Electrically conductive epoxy resin composites containing polyaniline with different morphologies. Mater Sci Eng A 448:356–360

    Article  Google Scholar 

  34. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  35. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670

    Article  CAS  Google Scholar 

  36. Sander J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40:5967–5971

    Article  Google Scholar 

  37. Alloul A, Bai S, Chen HM, Bai J (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62:1993–1998

    Article  Google Scholar 

  38. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899

    Article  CAS  Google Scholar 

  39. Kim B, Lee J, Yu I (2003) Electrical properties of single-wall carbon nanotube and epoxy composites. J Appl Phys 94:6724–6728

    Article  CAS  Google Scholar 

  40. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotube and epoxy composites. Carbon 43:1378–1385

    Article  CAS  Google Scholar 

  41. Li N, Huang Y, Du F, He X, Lin X, Gao H et al (2006) Electromagenetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 66:1285–1288

    Google Scholar 

  42. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composite. Polymer 47:2036–2045

    Article  CAS  Google Scholar 

  43. Thostenson ET, Chou TW (2006) Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44:3022–3029

    Article  CAS  Google Scholar 

  44. Yuen SM, Ma CC, Wu HH, Kuan HC, Chen WJ, Liao SH, Hsu CW, Wu HL (2007) Preparation and thermal, electrical, and morphological properties of multiwalled carbon nanotube and epoxy composites. J Appl Polym Sci 103:1272–1278

    Article  CAS  Google Scholar 

  45. Santos AS, Leite T, Furtado CA, Welter C, Pardini LC, Silva GG (2008) Morphology, thermal expansion, and electrical conductivity of multiwalled carbon nanotube/epoxy composites. J Appl Polym Sci 108:979–986

    Article  Google Scholar 

  46. Thostenson ET, Ziaee S, Chou TW (2009) Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Compos Sci Technol 69:801–804

    Article  CAS  Google Scholar 

  47. Wang YH, Chang CM, Liu YL (2012) Benzoxazine-functionalized multi-walled carbon nanotubes for preparation of electrically-conductive polybenzoxazine. Polymer 53(1):106–112

    Article  CAS  Google Scholar 

  48. Jovic N, Dudic D, Montone A, Antisari MV, Mitric M, Djokovic V (2008) Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scripta Mater 58:846–849

    Google Scholar 

  49. Celzard A, McRae E, Mareche JF, Furdin G, Dufort M, Deleuze C (1996) Composites based on micron-sized exfoliated graphite particles: electrical conduction, critical exponents and anisotropy. J Phys Chem Solids 57:715–718

    Article  CAS  Google Scholar 

  50. Lianga J, Wanga Y, Huanga Y, Maa Y, Liua Z, Caib J (2009) Electromagenetic interference shielding of graphene/epoxy composites. Carbon 47:922–925

    Google Scholar 

  51. Kimura H, Ohtsuk K, Matsumoto A (2012) Performance of graphite filled composite based on benzoxazine resin. II. Decreasing the moulding time of the composite. Polym Polym Comps 20(8):717–724

    Google Scholar 

  52. Mamunya YP, Davydenko VV, Pissis P, Lebedev EV (2002) Electrical and thermal conductivity of polymer filled with metal powders. Eur Polym J 38:1887–1897

    Article  CAS  Google Scholar 

  53. Khosla A (2010) Electrically conductive, thermosetting elastomeric material and uses therefore. US Patent No. US 20100116527 A1

    Google Scholar 

  54. Chandrasekhar P (1999) Conducting polymers, fundamentals and applications: a practical approach, Kulwer Academic Publishers, London

    Google Scholar 

  55. Skotheim TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of Conducting Polymer. Marcel Dekker, Inc, New York

    Google Scholar 

  56. Sugino M, Hara H, Meura T (2012) Semiconductor element mounting board. US Patent No. 8,269,332

    Google Scholar 

  57. Nakao K (2012) Conductive thermosetting adhesive tape. US Patent No. 20120325518 A1

    Google Scholar 

  58. Atkins T, Beach BA (2012) EMI shielding thermoset article. US Patent No. 20120107538 A1

    Google Scholar 

  59. Chikaoka Y (1995) Multilayer piezoelectric element. US Patent No. 5406164

    Google Scholar 

  60. Fitts BB (2004) Thermosetting composition for electrochemical cell components and methods of making thereof. US Patent No. 6811917 B2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarawut Rimdusit .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Rimdusit, S., Jubsilp, C., Tiptipakorn, S. (2013). Electrical Conductivity of Filled Polybenzoxazines. In: Alloys and Composites of Polybenzoxazines. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-4451-76-5_7

Download citation

Publish with us

Policies and ethics