Skip to main content

Interactive Image Segmentation Techniques

  • Chapter
  • First Online:
Interactive Segmentation Techniques

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSSIGNAL))

Abstract

Interactive image segmentation techniques are semiautomatic image processing approaches. They are used to track object boundaries and/or propagate labels to other regions by following user guidance so that heterogeneous regions in one image can be separated. User interactions provide the high-level information indicating the “object” and “background” regions. Then, various features such as locations, color intensities, local gradients can be extracted and used to provide the information to separate desired objects from the background. We introduce several interactive image segmentation methods according to different models and used image features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boykov Y, Jolly M (2001) Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In: Proceeding of 8th IEEE international conference on computer vision, ICCV 2001, IEEE, vol 1, pp 105–112

    Google Scholar 

  2. Greig D, Porteous B, Seheult A (1989) Exact maximum a posteriori estimation for binary images. J Roy Stat Soc 51(2):271–279

    Google Scholar 

  3. McGuinness K, O’Connor N (2010) A comparative evaluation of interactive segmentation algorithms. Pattern Recogn 43(2):434–444

    Article  MATH  Google Scholar 

  4. Rother C, Kolmogorov V, Blake A (2004) “Grabcut”: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309–314

    Article  Google Scholar 

  5. Li Y, Sun J, Tang CK, Shum HY (2004) Lazy snapping. ACM Trans Graph 23(3):303–308

    Article  Google Scholar 

  6. Boykov Y, Funka-Lea G (2006) Graph cuts and efficient n-d image segmentation. Int J Comput Vision 70(2):109–131

    Article  Google Scholar 

  7. Boykov Y, Veksler O (2006) Graph cuts in vision and graphics: theories and applications. Handbook of mathematical models in computer vision, pp. 79–96

    Google Scholar 

  8. Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137

    Article  Google Scholar 

  9. Ford LR, Fulkerson DR (1962) Flows in networks. Princeton University Press, Princeton

    Google Scholar 

  10. Wu Z, Leahy R (1993) An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans Pattern Anal Mach Intell 15(11):1101–1113

    Article  Google Scholar 

  11. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6):583–598

    Article  Google Scholar 

  12. Price B, Morse B, Cohen S (2010) Geodesic graph cut for interactive image segmentation. In: 2010 IEEE conference on computer vision and pattern recognition, IEEE, pp 3161–3168

    Google Scholar 

  13. Bai X, Sapiro G (2007) A geodesic framework for fast interactive image and video segmentation and matting. In: IEEE 11th international conference on computer vision, ICCV 2007, IEEE, pp 1–8

    Google Scholar 

  14. Criminisi A, Sharp T, Blake A (2008) Geos: geodesic image segmentation. Comput Vis ECCV 2008:99–112

    Google Scholar 

  15. Freedman D, Zhang T (2005) Interactive graph cut based segmentation with shape priors. In: IEEE computer society conference on computer vision and pattern recognition, IEEE, vol 1, pp 755–762

    Google Scholar 

  16. Veksler O (2008) Star shape prior for graph-cut image segmentation. Comput Vis ECCV 2008:454–467

    Google Scholar 

  17. Gulshan V, Rother C, Criminisi A, Blake A, Zisserman A (2010) Geodesic star convexity for interactive image segmentation. In: 2010 IEEE conference on computer vision and pattern recognition(CVPR), IEEE, pp 3129–3136

    Google Scholar 

  18. Vicente S, Kolmogorov V, Rother C (2008) Graph cut based image segmentation with connectivity priors. In: IEEE Conference on Computer vision and pattern recognition, CVPR 2008, IEEE, pp 1–8

    Google Scholar 

  19. Wang J, Bhat P, Colburn R, Agrawala M, Cohen M (2005) Interactive video cutout. In: ACM transactions on graphics, ACM, pp 585–594

    Google Scholar 

  20. Lombaert H, Sun Y, Grady L, Xu C (2005) A multilevel banded graph cuts method for fast image segmentation. In: 10th IEEE international conference on computer vision, ICCV 2005, IEEE, vol 1, pp 259–265

    Google Scholar 

  21. Pratt W (2007) Digital image processing: PIKS scientific inside. Wiley-Interscience Publication, Hoboken

    Google Scholar 

  22. Lakshmi S, Sankaranarayanan D (2010) A study of edge detection techniques for segmentation computing approaches. Int J Comput Appl IJCA 1:7–10

    Google Scholar 

  23. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6:679–698

    Article  Google Scholar 

  24. Bao P, Zhang L, Wu X (2005) Canny edge detection enhancement by scale multiplication. IEEE Trans Pattern Anal Mach Intell 27(9):1485–1490

    Article  Google Scholar 

  25. Demigny D (2002) On optimal linear filtering for edge detection. IEEE Trans Image Process 11(7):728–737

    Article  Google Scholar 

  26. Petrou M, Kittler J (1991) Optimal edge detectors for ramp edges. IEEE Trans Pattern Anal Mach Intell 13(5):483–491

    Article  Google Scholar 

  27. Torre V, Poggio T (1986) On edge detection. IEEE Trans Pattern Anal Mach Intell 2:147–163

    Article  Google Scholar 

  28. Marr D, Hildreth E (1980) Theory of edge detection. Proc Roy Soc Lond Ser B Biol Sci 207(1167):187–217

    Article  Google Scholar 

  29. Haralick R (1984) Digital step edges from zero crossing of second directional derivatives. IEEE Trans Pattern Anal Mach Intell 1:58–68

    Article  Google Scholar 

  30. Gauch J, Hsia C (1992) Comparison of three-color image segmentation algorithms in four color spaces. In: Applications in optical science and engineering. International Society for Optics and Photonics, Bellingham, pp 1168–1181

    Google Scholar 

  31. Koschan A, Abidi M (2005) Detection and classification of edges in color images. IEEE Signal Process Mag 22(1):64–73

    Article  Google Scholar 

  32. Mortensen E, Morse B, Barrett W, Udupa J (1992) Adaptive boundary detection using ‘live-wire’ two-dimensional dynamic programming. In: Proceedings of computers in cardiology, IEEE, pp 635–638

    Google Scholar 

  33. Udupa J, Samarasekera S, Barrett W (1992) Boundary detection via dynamic programming. In: Proceedings of SPIE-the international society for optical engineering, pp 33–33

    Google Scholar 

  34. Barrett W, Mortensen E (1996) Fast, accurate, and reproducible live-wire boundary extraction. In: Visualization in biomedical computing. Springer, New York, pp 183–192

    Google Scholar 

  35. Barrett W, Mortensen E (1997) Interactive live-wire boundary extraction. Med Image Anal 1(4):331–341

    Article  Google Scholar 

  36. Falcão A, Udupa J, Miyazawa F (2000) An ultra-fast user-steered image segmentation paradigm: live wire on the fly. IEEE Trans Med Imaging 19(1):55–62

    Article  Google Scholar 

  37. Falcão A, Udupa J, Samarasekera S, Hirsch B (1996) User-steered image boundary segmentation. In: Proceedings of SPIE on medical imaging, vol 2710, pp 278–288

    Google Scholar 

  38. Falcão A, Udupa J, Samarasekera S, Sharma S, Hirsch B, Lotufo R (1998) User-steered image segmentation paradigms: live wire and live lane. Graph Models Image Process 60(4):233–260

    Article  Google Scholar 

  39. Kang H, Shin S (2002) Enhanced lane: interactive image segmentation by incremental path map construction. Graph Models 64(5):282–303

    Article  MATH  Google Scholar 

  40. Mortensen E, Barrett W (1998) Interactive segmentation with intelligent scissors. Graph Models Image Process 60(5):349–384

    Article  MATH  Google Scholar 

  41. Mortensen EN, Barrett WA (1995) Intelligent scissors for image composition. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques, SIGGRAPH ’95. ACM, New York, pp 191–198

    Google Scholar 

  42. Gimp G (2008) Image manipulation program. User manual, edge-detect filters, sobel. The GIMP Documentation Team

    Google Scholar 

  43. Dijkstra E (1959) A note on two problems in connexion with graphs. Numer math 1(1):269–271

    Article  MathSciNet  MATH  Google Scholar 

  44. Mortensen E, Barrett W (1999) Toboggan-based intelligent scissors with a four-parameter edge model. In: IEEE computer society conference on computer vision and pattern recognition, IEEE, vol 2

    Google Scholar 

  45. Blake A, Isard M et al (1998) Active contours, vol 1. Springer, London

    Google Scholar 

  46. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. In: Proceedings of the workshop on mathematical methods in biomedical image analysis, IEEE, pp 171–180

    Google Scholar 

  47. Singh A, Terzopoulos D, Goldgof D (1998) Deformable models in medical image analysis. IEEE Computer Society Press, New York

    Google Scholar 

  48. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  49. Papari G, Petkov N (2011) Edge and line oriented contour detection: state of the art. Image Vis Comput 29(2):79–103

    Article  Google Scholar 

  50. Brigger P, Hoeg J, Unser M (2000) B-spline snakes: a flexible tool for parametric contour detection. IEEE Trans Image Process 9(9):1484–1496

    Article  MathSciNet  MATH  Google Scholar 

  51. Cohen L, Cohen I (1993) Finite-element methods for active contour models and balloons for 2-d and 3-d images. IEEE Trans Pattern Anal Mach Intell 15(11):1131–1147

    Article  Google Scholar 

  52. Gunn S, Nixon M (1995) Improving snake performance via a dual active contour. In: Computer analysis of images and patterns. Springer, Berlin, pp 600–605

    Google Scholar 

  53. Gunn S, Nixon M (1997) A robust snake implementation; a dual active contour. IEEE Trans Pattern Anal Mach Intell 19(1):63–68

    Article  Google Scholar 

  54. Leymarie F, Levine M (1993) Tracking deformable objects in the plane using an active contour model. IEEE Trans Pattern Anal Mach Intell 15(6):617–634

    Article  Google Scholar 

  55. Li B, Acton S (2007) Active contour external force using vector field convolution for image segmentation. IEEE Trans Image Process 16(8):2096–2106

    Article  MathSciNet  Google Scholar 

  56. Mishra A, Fieguth P, Clausi D (2011) Decoupled active contour (dac) for boundary detection. IEEE Trans Pattern Anal Mach Intell 33(2):310–324

    Article  Google Scholar 

  57. Shih F, Zhang K (2007) Locating object contours in complex background using improved snakes. Comput Vis Image Underst 105(2):93–98

    Article  MathSciNet  Google Scholar 

  58. Sundaramoorthi G, Yezzi A, Mennucci A (2008) Coarse-to-fine segmentation and tracking using sobolev active contours. IEEE Trans Pattern Anal Mach Intell 30(5):851–864

    Article  Google Scholar 

  59. Wong Y, Yuen P, Tong C (1998) Segmented snake for contour detection. Pattern Recogn 31(11):1669–1679

    Article  Google Scholar 

  60. Xu C, Prince J (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  MathSciNet  MATH  Google Scholar 

  61. Bresson X, Esedoglu S, Vandergheynst P, Thiran J, Osher S (2007) Fast global minimization of the active contour/snake model. J Math Imaging Vis 28(2):151–167

    Article  MathSciNet  Google Scholar 

  62. Caselles V, Catté F, Coll T, Dibos F (1993) A geometric model for active contours in image processing. Numer Math 66(1):1–31

    Article  MathSciNet  MATH  Google Scholar 

  63. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  64. Malladi R, Sethian J, Vemuri B (1995) Shape modeling with front propagation: a level set approach. IEEE Transa Pattern Anal Mach Intell 17(2):158–175

    Article  Google Scholar 

  65. Zhu S, Yuille A (1996) Region competition: Unifying snakes, region growing, and bayes/mdl for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 18(9):884–900

    Article  Google Scholar 

  66. Jalba A, Wilkinson M, Roerdink J (2004) Cpm: a deformable model for shape recovery and segmentation based on charged particles. IEEE Trans Pattern Anal Mach Intell 26(10):1320–1335

    Article  Google Scholar 

  67. Xie X, Mirmehdi M (2008) Mac: magnetostatic active contour model. IEEE Trans Pattern Anal Mach Intell 30(4):632–646

    Article  Google Scholar 

  68. Liang J, McInerney T, Terzopoulos D et al (2006) United snakes. Med Image Anal 10(2):215–233

    Article  Google Scholar 

  69. Zienkiewicz O, Taylor R, Zhu J (2005) The finite element method: its basis and fundamentals, vol 1. Butterworth-Heinemann, Oxford

    Google Scholar 

  70. Ronfard R (1994) Region-based strategies for active contour models. Int J Comput Vis 13(2):229–251

    Article  Google Scholar 

  71. Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46(3):223–247

    Article  MATH  Google Scholar 

  72. Leventon M, Grimson W, Faugeras O (2000) Statistical shape influence in geodesic active contours. In: Proceedings of IEEE conference on computer vision and pattern recognition, IEEE, vol 1, pp 316–323

    Google Scholar 

  73. Nguyen TNA, Cai J, Zhang J, Zheng J (2012) Robust interactive image segmentation using convex active contours. IEEE Transactions on Image Processing 21(8):3734–3743

    Article  MathSciNet  Google Scholar 

  74. Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT press, Cambridge

    Google Scholar 

  75. TT II C, EE C, Image segmentation and techniques: a review

    Google Scholar 

  76. Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783

    Article  Google Scholar 

  77. Grady L, Sinop A (2008) Fast approximate random walker segmentation using eigenvector precomputation. In: IEEE conference on computer vision and pattern recognition, CVPR 2008, IEEE, pp 1–8

    Google Scholar 

  78. Kim T, Lee K, Lee S (2008) Generative image segmentation using random walks with restart. Comput Vis ECCV 2008:264–275

    Google Scholar 

  79. Courant R, Hilbert D (1944) Methods of mathematical physics. Interscience Publishers Inc., New York

    Google Scholar 

  80. Dodziuk J (1984) Difference equations, isoperimetric inequality and transience of certain random walks. Trans Am Math Soc 284:787–794

    Google Scholar 

  81. Yang W, Cai J, Zheng J, Luo J (2010) User-friendly interactive image segmentation through unified combinatorial user inputs. IEEE Trans Image Process 19(9):2470–2479

    Article  MathSciNet  Google Scholar 

  82. Pan J, Yang H, Faloutsos C, Duygulu P (2004) Automatic multimedia cross-modal correlation discovery. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 653–658

    Google Scholar 

  83. Tong H, Faloutsos C, Pan J (2008) Random walk with restart: fast solutions and applications. Knowl Inf Syst 14(3):327–346

    Article  MATH  Google Scholar 

  84. Jeh G, Widom J (2003) Scaling personalized web search. In: Proceedings of the 12th international conference on World Wide Web, ACM, pp 271–279

    Google Scholar 

  85. Kamvar S, Haveliwala T, Manning C, Golub G (2003) Exploiting the block structure of the web for computing pagerank. Stanford University Technical Report

    Google Scholar 

  86. Fogaras D, Rácz B (2004) Towards scaling fully personalized pagerank. In: Algorithms and Models for the Web-Graph, pp 105–117

    Google Scholar 

  87. Beucher S et al (1992) The watershed transformation applied to image segmentation. Scanning Microsc Suppl 6:299–314

    Google Scholar 

  88. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647

    Article  Google Scholar 

  89. Horowitz SL, Pavlidis T (1974) Picture segmentation by a directed split-and-merge procedure. In: Proceedings of the 2nd international joint conference on pattern recognition, vol 424, p 433

    Google Scholar 

  90. Raja D, Khadir A, Ahamed D (2009) Moving toward region-based image segmentation techniques: a study. J Theor Appl Inf Technol 81–87

    Google Scholar 

  91. Haris K, Efstratiadis S, Maglaveras N, Katsaggelos A (1998) Hybrid image segmentation using watersheds and fast region merging. IEEE Trans Image Process 7(12):1684–1699

    Article  Google Scholar 

  92. Mohana Rao K, Dempster A (2002) Modification on distance transform to avoid over-segmentation and under-segmentation. In: Video/Image processing and multimedia communications 4th EURASIP-IEEE region 8 international symposium on VIPromCom, IEEE, pp 295–301

    Google Scholar 

  93. Edge detection and image segmentation (edison) system (2009). http://coewww.rutgers.edu/riul/research/code.html

  94. Mehnert A, Jackway P (1997) An improved seeded region growing algorithm. Pattern Recogn Lett 18(10):1065–1071

    Article  Google Scholar 

  95. Fan J, Zeng G, Body M, Hacid M (2005) Seeded region growing: an extensive and comparative study. Pattern Recogn Lett 26(8):1139–1156

    Article  Google Scholar 

  96. Vezhnevets V, Konouchine V (2005) Growcut: interactive multi-label nd image segmentation by cellular automata. In: Proceedings of graphicon, pp 150–156

    Google Scholar 

  97. Von Neumann J, Burks A (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  98. Das D (2012) A survey on cellular automata and its applications. In: Global trends in computing and communication systems, pp 753–762

    Google Scholar 

  99. Kari J (2005) Theory of cellular automata: a survey. Theor Comput Sci 334(1):3–33

    Article  MathSciNet  MATH  Google Scholar 

  100. Kauffmann C, Piché N (2010) Seeded and medical image segmentation by cellular automaton on GPU. Int J Comput Assist Radiol Surg 5(3):251–262

    Article  Google Scholar 

  101. Grady L, Funka-Lea G (2004) Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials. In: Computer vision and mathematical methods in medical and biomedical image, analysis, pp 230–245

    Google Scholar 

  102. Ning J, Zhang L, Zhang D, Wu C (2010) Interactive image segmentation by maximal similarity based region merging. Pattern Recogn 43(2):445–456

    Article  MATH  Google Scholar 

  103. Noma A, Graciano A, Consularo L, Bloch I (2012) Interactive image segmentation by matching attributed relational graphs. Pattern Recogn 45(3):1159–1179

    Article  Google Scholar 

  104. Consularo L, Cesar R, Bloch I (2007) Structural image segmentation with interactive model generation. In: IEEE international conference on image processing, vol 6, IEEE, pp VI-45

    Google Scholar 

  105. Bunke H (2000) Recent developments in graph matching. In: 15th international conference on pattern recognition, vol 2, IEEE, pp 117–124

    Google Scholar 

  106. Noma A, Pardo A (2011) Structural matching of 2d electrophoresis gels using deformed graphs. Pattern Recogn Lett 32(1):3–11

    Article  Google Scholar 

  107. Lin H, Tai Y, Brown M (2011) Motion regularization for matting motion blurred objects. IEEE Trans Pattern Anal Mach Intell 33(11):2329–2336

    Article  Google Scholar 

  108. Porter T, Duff T (1984) Compositing digital images. ACM Siggraph Comput Graph 18(3):253–259

    Article  Google Scholar 

  109. Wang J, Cohen MF (2005) An iterative optimization approach for unified image segmentation and matting. In: 10th IEEE international conference on computer vision, ICCV 2005, vol 2, IEEE, pp 936–943

    Google Scholar 

  110. Wang J, Cohen MF (2008) Image and video matting, vol 3. Now Publishers, Hanover

    Google Scholar 

  111. Wang J, Agrawala M, Cohen MF (2007) Soft scissors: an interactive tool for realtime high quality matting. In: ACM Transactions on Graphics (TOG), vol 26, p 9, ACM

    Google Scholar 

  112. Anh NTN, Cai J, Zhang J, Zheng J (2012) Constrained active contours for boundary refinement in interactive image segmentation. In: 2012 IEEE international symposium on circuits and systems (ISCAS), IEEE, pp 870–873

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia He .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

He, J., Kim, CS., Kuo, CC.J. (2014). Interactive Image Segmentation Techniques. In: Interactive Segmentation Techniques. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-4451-60-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-60-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4451-59-8

  • Online ISBN: 978-981-4451-60-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics