Skip to main content

A Non-Hydrostatic Non-Dispersive Shallow Water Model

  • Chapter
  • First Online:
Advances in Hydroinformatics

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

  • 1768 Accesses

Abstract

An improvement of the nonlinear shallow water (or Saint-Venant) equations is proposed. The new model is designed to take into account the effects resulting from the large spatial and/or temporal variations of the seabed. The model is derived from a variational principle by choosing the appropriate shallow water ansatz and imposing suitable constraints. Thus, the derivation procedure does not explicitly involve any small parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Saint-Venant, A. J. C. (1871). Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Academic Science Paris, 73, 147–154.

    Google Scholar 

  2. Peregrine, D. H. (1967). Long waves on a beach. Journal of Fluid Mechanics, 27, 815–827.

    Article  MATH  Google Scholar 

  3. Serre, F. (1953). Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille blanche, 8, 374–872.

    Article  Google Scholar 

  4. Dressler, R. F. (1978). New nonlinear shallow-flow equations with curvature. Journal of Hydraulic Research, 16(3), 205–222.

    Article  Google Scholar 

  5. Keller, J. B. (2003). Shallow-water theory for arbitrary slopes of the bottom. Journal of Fluid Mechanics, 489, 345–348.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchut, F., Mangeney-Castelnau, A., Perthame, B., & Vilotte, J.-P. (2003). A new model of Saint-Venant and Savage-Hutter type for gravity driven shallow water flows. C. R. Academic Science Paris, I(336), 531–536.

    Article  MathSciNet  Google Scholar 

  7. Clamond, D., & Dutykh, D. (2012). Practical use of variational principles for modeling water waves. Physica D: Nonlinear Phenomena, 241(1), 25–36.

    Article  MathSciNet  MATH  Google Scholar 

  8. Petrov, A. A. (1964). Variational statement of the problem of liquid motion in a container of finite dimensions. Prikladnaia Mathematics Mekhanika, 28(4), 917–922.

    MATH  Google Scholar 

  9. Luke, J. C. (1967). A variational principle for a fluid with a free surface. Journal of Fluid Mechanics, 27, 375–397.

    Article  MathSciNet  Google Scholar 

  10. Zakharov, V. E. (1968). Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanical Technology Physics, 9, 190–194.

    Article  Google Scholar 

  11. Miles, J. W., & Salmon, R. (1985). Weakly dispersive nonlinear gravity waves. Journal of Fluid Mechanics, 157, 519–531.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dutykh, D., & Clamond, D. (2011). Shallow water equations for large bathymetry variations. Journal of Physics A: Mathematical Theory, 44, 332001.

    Article  MathSciNet  Google Scholar 

  13. Kolgan, N. E. (1975). Finite-difference schemes for computation of three dimensional solutions of gas dynamics and calculation of a flow over a body under an angle of attack. Uchenye Zapiski TsaGI [Science Notes Central Institute Aerodyn], 6(2), 1–6.

    Google Scholar 

  14. van Leer, B. (1979). Towards the ultimate conservative difference scheme V: a second order sequel to Godunov’ method. Journal of Computer Physics, 32, 101–136.

    Article  Google Scholar 

  15. van Leer, B. (2006). Upwind and high-resolution methods for compressible flow: From donor cell to residual-distribution schemes. Communications in Computational Physics, 1, 192–206.

    MATH  Google Scholar 

  16. Harten, A., & Osher, S. (1987). Uniformly high-order accurate nonoscillatory schemes. I. SIAM Journal of Numerical Analytical, 24, 279–309.

    Article  MathSciNet  MATH  Google Scholar 

  17. Harten, A. (1989). ENO schemes with subcell resolution. Journal of Computer Physics, 83, 148–184.

    Article  MathSciNet  MATH  Google Scholar 

  18. Xing, Y., & Shu, C.-W. (2005). High order finite difference WENO schemes with the exact conservation property for the shallow water equations. Journal of Computer Physics, 208, 206–227.

    Article  MathSciNet  MATH  Google Scholar 

  19. Dutykh, D., & Clamond, D. (2012). Modified shallow water equations for significantly varying bottoms. Submitted.

    Google Scholar 

  20. Dutykh, D., Katsaounis, T., & Mitsotakis, D. (2011). Dispersive wave runup on non-uniform shores. In J. Fort, et al. (Eds.), Finite Volumes for Complex Applications VI - Problems & Perspectives (pp. 389–397). pp Prague: Springer Berlin Heidelberg.

    Google Scholar 

  21. Dutykh, D., Labart, C., & Mitsotakis, D. (2011). Long wave run-up on random beaches. Physics Review Letter, 107, 184504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Clamond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Clamond , D., Dutykh, D. (2014). A Non-Hydrostatic Non-Dispersive Shallow Water Model. In: Gourbesville, P., Cunge, J., Caignaert, G. (eds) Advances in Hydroinformatics. Springer Hydrogeology. Springer, Singapore. https://doi.org/10.1007/978-981-4451-42-0_16

Download citation

Publish with us

Policies and ethics