Skip to main content

Introduction

  • Chapter
  • First Online:
Carbon Nanotubes as Nanodelivery Systems

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 777 Accesses

Abstract

A carbon nanotube (CNT) is a fascinating nanostructure that has promising potentials for future applications. A CNT is a cylindrical tube made up of carbon atoms, and exists either as a single-walled structure known as a single wall carbon nanotube (SWCNT) or as a multilayered structure known as a multi-walled carbon nanotube (MWCNT). The diameter of an SWCNT can be as small as 0.3 nm, whereas the inner diameter of an MWCNT can be larger than 15 nm. An article, which first reported the findings of CNTs, was published by Radushkevich and Lukyanovich, in the Russian Journal of Physical Chemistry. However, the most significant publication of CNTs made to the scientific community was given by Iijima in 1991. Intensive research efforts on CNTs have since escalated and gained attentions worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.L. Mao, X.H. Yan, Y. Xiao, J. Xiang, Y.R. Yang, H.L. Yu, The viability of 0.3 nm diameter carbon nanotubes. Nanotechnology 15, 1000 (2004)

    Article  Google Scholar 

  2. Y. Huang, D.G. Vlachos, J.G. Chen, Synthesis of rigid and stable large-inner-diameter multiwalled carbon nanotubes. RSC Advances 2, 2685–2687 (2012)

    Article  Google Scholar 

  3. G. Editorial, Who should be given the credit for the discovery of carbon nanotubes? Carbon 44, 1621–1623 (2006)

    Article  Google Scholar 

  4. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  5. N. Sinha, J.T.-W. Yeow, Carbon nanotubes for biomedical applications. IEEE Trans. Nanobiosci. 4, 180–195 (2005)

    Article  Google Scholar 

  6. Z. Liu, M. Winters, M. Holodniy, H. Dai, siRNA delivery into Human T Cells and Primary Cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46, 2023–2327 (2007)

    Article  Google Scholar 

  7. A. Star, E. Tu, J. Niemann, J.-C.P. Gabriel, C.S. Joiner, C. Valcke, Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Biophysics 103, 921–926 (2006)

    Google Scholar 

  8. B. Gigliotti, B. Sakizzie, D.S. Bethune, R.M. Shelby, J.N. Cha, Sequence-Independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. Nano Lett. 6, 159–164 (2006)

    Article  Google Scholar 

  9. N.N. Naguib, Y.M. Mueller, P.M. Bojczuk, M.P. Rossi, P.D. Katsikis, Y. Gogotsi, Effect of carbon nanofibre structure on the binding of antibodies. Nanotechnology 16, 567–571 (2005)

    Article  Google Scholar 

  10. R. Wan, J. Li, H. Lu, H. Fang, Controllable water channel gating of nanometer dimensions. J. Am. Chem. Soc. 127, 7166–7170 (2005)

    Article  Google Scholar 

  11. A.T.C. Johnson, C. Staii, M. Chen, S. Khamis, R. Johnson, M.L. Klein, A. Gelperin, DNA-decorated carbon nanotubes for chemical sensing. Physica Status Solidi (b) 243, 3252–3256 (2006)

    Article  Google Scholar 

  12. I. Monch, A. Leonhardt, A. Meye, S. Hampel, R. Kozhuharova-Koseva, D. Elefant, M.P. Wirth, B. Buchner, Synthesis and characteristics of Fe-filled multi-walled carbon nanotubes for biomedical application. J. Phys: Conf. Ser. 61, 820–824 (2007)

    Article  Google Scholar 

  13. R. Hatakeyama, Y.F. Li, T. Kaneko, Transport properties of p-n junctions created in single-walled carbon nanotubes by Fe encapsulation, in Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, 2007, pp. 180–184

    Google Scholar 

  14. E. Katz, I. Willner, Biomolecule-functionalized carbon nanotubes, applications in nanobioelectronics. Chem Phys Chem 5, 1084–1104 (2004)

    Article  Google Scholar 

  15. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)

    Article  Google Scholar 

  16. D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)

    Article  Google Scholar 

  17. M. Kosaka, T.W. Ebbesen, H. Hiura, K. Tanigaki, Annealing effect on carbon nanotubes. An ESR study. Chem Phys Lett 233, 47–51 (1995)

    Article  Google Scholar 

  18. T.W. Ebbesen, T. Takada, Topological and SP3 defect structures in nanotubes. Carbon 33, 973–978 (1995)

    Article  Google Scholar 

  19. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)

    Article  Google Scholar 

  20. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Tunneling conductance of connected carbon nanotubes. Phys. Rev. 53, 2044–2050 (1996)

    Article  Google Scholar 

  21. Z. Yao, H.W.C. Postma, L. Balents, C. Dekker, Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999)

    Article  Google Scholar 

  22. L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Pure carbon nanoscale devices: nanotube heterojunctions. Phys. Rev. Lett. 76, 971–974 (1996)

    Article  Google Scholar 

  23. J.C. Charlier, T.W. Ebbesen, P. Lambin, Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys. Rev. 53, 11108–11113 (1996)

    Article  Google Scholar 

  24. C. Jin, K. Suenaga, S. Iijima, Plumbing carbon nanotubes. Nat. Nanotechnol. 3, 17–21 (2008)

    Article  Google Scholar 

  25. I. Hanasaki, A. Nakatani, Water flow through carbon nanotube junctions as molecular convergent nozzles. Nanotechnology 17, 2794–2804 (2006)

    Article  Google Scholar 

  26. M.C.G. Lim, Z.W. Zhong, Effects of fluid flow on the oligonucleotide folding in single-walled carbon nanotubes. Phys. Rev. 80, 041915-1-8 (2009)

    Google Scholar 

  27. Y.F. Li, R. Hatakeyama, J. Shishido, T. Kato, T. Kaneko, Air-stable p-n junction diodes based on single-walled carbon nanotubes encapsulating Fe nanoparticles. Appl. Phys. Lett. 90, 173127-1-3 (2007)

    Google Scholar 

  28. U. Weissker, S. Hampel, A. Leonhardt, B. Büchner, Carbon nanotubes filled with ferromagnetic materials. Materials 3, 4387–4427 (2010)

    Article  Google Scholar 

  29. R.D.R. Meyer, J. Sloan, R.E. Dunin-Borkowski, A.I. Kirkland, M.C. Novotny, S.R. Bailey, J.L. Hutchison, M.L.H. Green, Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289, 1324–1326 (2000)

    Google Scholar 

  30. A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R. Rao, Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem. Mater. 12, 202–205 (1999)

    Article  Google Scholar 

  31. E. Borowiak-Palen, E. Mendoza, A. Bachmatiuk, M.H. Rummeli, T. Gemming, J. Nogues, V. Skumryev, R.J. Kalenczuk, T. Pichler, S.R.P. Silva, Iron filled single-wall carbon nanotubes—a novel ferromagnetic medium. Chem. Phys. Lett. 421, 129–133 (2006)

    Article  Google Scholar 

  32. S. Costa, E. Borowiak-Palen, A. Bachmatiuk, M.H. Rümmeli, T. Gemming, R.J. Kalenczuk, Filling of carbon nanotubes for bio-applications. Physica Status Solidi (b) 244, 4315–4318 (2007)

    Google Scholar 

  33. F.W. Sun, H. Li, K.M. Liew, Compressive mechanical properties of carbon nanotubes encapsulating helical copper nanowires. Carbon 48, 1586–1591 (2010)

    Article  Google Scholar 

  34. W. Han, P. Redlich, F. Ernst, M. Ruhle, Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates. Appl. Phys. Lett. 75, 1875–1877 (1999)

    Article  Google Scholar 

  35. M. Monthioux, Filling single-wall carbon nanotubes. Carbon 40, 1809–1823 (2002)

    Article  Google Scholar 

  36. R. Fan, R. Karnik, M. Yue, D. Li, A. Majumdar, P. Yang, DNA translocation in inorganic nanotubes. Nano Lett. 5, 1633–1637 (2005)

    Article  Google Scholar 

  37. F. Banhart, N. Grobert, M. Terrones, J.-C. Charlier, P.M. Ajayan, Metal atoms in carbon nanotubes and related nanoparticles. Int. J. Mod. Phys. 15, 4037–4069 (2001)

    Article  Google Scholar 

  38. H. Kataura, Y. Maniwa, T. Kodama, K. Kikuchi, K. Hirahara, K. Suenaga, S. Iijima, S. Suzuki, Y. Achiba, W. Krätschmer, High-yield fullerene encapsulation in single-wall carbon nanotubes. Synth. Met. 121, 1195–1196 (2001)

    Article  Google Scholar 

  39. J. Wu, M.-L. Wang, R. Lu, W. Duan, The study on the filling of atoms in a carbon nanotube. Int. J. Mod. Phys. 12, 1601–1606 (1998)

    Article  Google Scholar 

  40. G.Y. Zhang, E.G. Wang, Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl. Phys. Lett. 82, 1926–1928 (2003)

    Article  Google Scholar 

  41. D. Schebarchov, S.C. Hendy, Capillary absorption of metal nanodroplets by single-wall carbon nanotubes. Nano Lett. 9, 3668 (2009)

    Article  Google Scholar 

  42. D. Schebarchov, S.C. Hendy, Capillary absorption of metal nanodroplets by single-wall carbon nanotubes. Nano Lett. 8, 2253–2257 (2008)

    Article  Google Scholar 

  43. K. Svensson, H. Olin, E. Olsson, Nanopipettes for metal transport. Phys. Rev. Lett. 93, 145901–1-4 (2004)

    Google Scholar 

  44. J.P. Dekker, A. Lodder, J. van Ek, Theory for the electromigration wind force in dilute alloys. Phys. Rev. 56, 12167–12177 (1997)

    Article  Google Scholar 

  45. S. Fujisawa, T. Kikkawa, T. Kizuka, Direct observation of electromigration and induced stress in Cu Nanowire. Jpn. J. Appl. Phys. 42, L1433–L1435 (2003)

    Article  Google Scholar 

  46. F.G. Sen, M.K. Aydinol, Atomistic simulation of self-diffusion in Al and Al alloys under electromigration conditions. J. Appl. Phys. 104, 073510–073514 (2008)

    Article  Google Scholar 

  47. J.W. Kang, H.J. Hwang, Model schematics of a nanoelectronic device based on multi-endo-fullerenes electromigration. Physica E 27, 245–252 (2005)

    Article  Google Scholar 

  48. B.C. Regan, S. Aloni, R.O. Ritchie, U. Dahmen, A. Zettl, Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004)

    Article  Google Scholar 

  49. L.X. Dong, X.Y. Tao, L. Zhang, X.B. Zhang, B.J. Nelson, Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett. 7, 58–63 (2007)

    Article  Google Scholar 

  50. D. Ugarte, A. Chatelain, W.A. de Heer, Nanocapillarity and chemistry in carbon nanotubes. Science 274, 1897–1899 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin Choon Giap Lim .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Lim, M.C.G., Zhong, Z. (2013). Introduction. In: Carbon Nanotubes as Nanodelivery Systems. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4451-39-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-39-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4451-38-3

  • Online ISBN: 978-981-4451-39-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics