Skip to main content

Microwave Filter Design

  • Chapter
  • First Online:
Microwave Systems Design
  • 3067 Accesses

Abstract

Filters are two-port devices designed in such a way so that a group of specified frequencies is allowed to pass with little attenuation, while unwanted frequencies are rejected. They can also be designed to symmetrically or asymmetrically modify the amplitude and/or phase of a signal. Filters are used widely in military or civilian communication systems — they are used to control the frequency response of a device, provide a means of channel separation in frequency division multiplexing systems, remove harmonics in oscillators or amplifiers, and are employed for noise reduction and to reject signals at particular frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diab H, Temcamani F, Gautier JL (2002) Microwave active filter using finite gain amplifier. In: Proceedings of the 32nd European Microwave Conference, pp 1–4

    Google Scholar 

  2. Chi-Chang C, Itoh T (1990) A varactor-tuned, active microwave band-pass filter. In: IEEE MTT-S International Microwave Symposium 1990, pp 499–502

    Google Scholar 

  3. Trabelsi H, Cruchon C (1992) A varactor-tuned active microwave band pass filter. IEEE Microw Guided Wave Lett 2(6):231

    Article  Google Scholar 

  4. Jiao et al XH (1990) Microwave frequency agile active filters for MIC and MMIC applications. In: IEEE MTT-S International Microwave Symposium 1990, pp 503–506

    Google Scholar 

  5. Moazzam MR, Aghvami AH (1991) Analysis and design of a novel microwave active filter. In: Proceedings of Ant. and Prop. Soc. International Symposium, 24–28 June 1991, pp 230–231

    Google Scholar 

  6. Karacaoglu U, Robertson ID (1995) MMIC active band pass filter using varactor-tuned negative resistance elements. IEEE Trans Microw Theory Tech 43(12): 2926–2932

    Google Scholar 

  7. Kapilovich BY (1997) Variety of approaches to designing microwave active filters. In: Proceedings of the 27th European Microwave Conference, pp 397–408

    Google Scholar 

  8. Scanlan JO, Levy R (1970) Circuit theory. Oliver and Boyd, Edinburgh

    Google Scholar 

  9. Temes GC, LaPatra JW (1977) Introduction to circuit synthesis and design. McGraw-Hill, New York

    Google Scholar 

  10. Matthaei G, Young L, Jones EMT (1980) Microwave filters, impedance matching networks and coupling structures. Artech House, Dedham

    Google Scholar 

  11. Bethe HA (1943) Lumped constants for small irises. Report 43–22, M.I.T Radiation Laboratory, Cambridge

    Google Scholar 

  12. Bethe HA (1943) Theory of side windows in waveguides. Report 43–27, M.I.T Radiation Laboratory, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  13. Bethe HA (1943) Formal theory of waveguides of arbitrary cross section. Report 43–26, M.I.T Radiation Laboratory, Cambridge

    Google Scholar 

  14. Collins RE (1960) Field theory of guided waves, section 7.3. McGraw-Hill, New York

    Google Scholar 

  15. Matthaei G, Young L, Jones EMT (1980) Microwave filters, impedance matching networks and coupling structures. Artech House, Dedham, pp 450–459

    Google Scholar 

  16. Matthaei G, Young L, Jones EMT (1980) Microwave filters, impedance matching networks and coupling structures. Artech House, Dedham, p 358

    Google Scholar 

  17. Cohn SB (1949) Analysis of a wideband waveguide filter. In: Proceedings of the IRE, vol 37, pp. 651–656

    Google Scholar 

  18. Rizzi PA (1988) Microwave engineering—passive circuits. Prentice-Hall, New Jersey, pp 426–428

    Google Scholar 

  19. Butterworth S (1930) On the theory of filter amplifiers. Wireless Engineer 7:536–541

    Google Scholar 

  20. Rhodes JD (1976) Theory of electrical filters. Wiley, New York

    Google Scholar 

  21. Huelsman LP (1993) Active and passive analog filter design. McGraw-Hill, New York

    Google Scholar 

  22. Winder S (1998) Filter design. Newnes, Oxford

    Google Scholar 

  23. Zverev AI (1967) Handbook of Filter Synthesis. Wiley, New York

    Google Scholar 

  24. Baez-Lopez D (1979) Synthesis and sensitivity analysis of elliptical networks. Ph.D Dissertation, University of Arizona

    Google Scholar 

  25. Thomson WE (1949) Delay networks having maximally flat frequency characteristics. Proceedings of the IEE, vol 96, pp 487–490

    Google Scholar 

  26. Kiyasu Z (1943) On a design method of delay networks. J Inst Electr Commun Eng 26:598–610

    Google Scholar 

  27. Richard PI (1948) Resistor-transmission line circuits. In: Proceedings of the IRE, vol 36, pp 217–220, Feb 1948

    Google Scholar 

  28. Ozaki H, Ishii J (1958) Synthesis of a class of stripline filters. IRE Trans Circuit Theory CT-5:104–109

    Google Scholar 

  29. Rizzi PA (1988) Microwave engineering—passive circuits. Prentice-Hall, New Jersey, pp 426–428

    Google Scholar 

  30. Edwards T (1992) Foundations for microstrip circuit design. Wiley, New York, pp 11, 287

    Google Scholar 

  31. Awang Z (2006) Microwave engineering for wireless communications. Prentice Hall, Kuala Lumpur, p 31

    Google Scholar 

  32. Inzeo GD et al (1979) Design of circular planar networks for bias filter elements in microwave integrated circuits. Alta Frequenza 48(7):425–431

    Google Scholar 

  33. Oliner AA (1955) Equivalent circuits for discontinuities in balanced strip transmission line. IRE Trans, PGMTT MTT-3:134–143

    Google Scholar 

  34. Altschuler HM, Oliner AA (1960) Discontinuities in the center conductor of symmetric strip transmission line. IRE Trans, PGMTT MTT-8:328–339

    Google Scholar 

  35. Benedek P, Silvester P (1972) Equivalent capacitances for microstrip gaps and steps. IEEE Trans Microw Theory Tech, MTT-20:729–733

    Google Scholar 

  36. Matthaei G, Young L, Jones EMT (1980) Microwave filters, impedance matching networks and coupling structures. Artech House, Dedham, pp 441–442

    Google Scholar 

  37. Hong JS, Lancaster MJ (2001) Microstrip filters for RF/microwave applications. Wiley, New York

    Google Scholar 

  38. Gupta KC, Garg R, Bahl I, Bhartia P (1996) Microstrip lines and slotlines, 2nd edn. Artech House, Boston

    Google Scholar 

  39. Saad T (ed) (1968) Microwave engineers technical and buyers guide. Horizon House, Dedham

    Google Scholar 

  40. Cunningham GJ, Blenkinsop PA, Palmer J (1989) Microstrip end-coupled filter design at mm-wave frequencies. In: Proceedings of the 19th European Microwave Conference, London. pp 1210–1213, Sept 1989

    Google Scholar 

  41. Matthaei G, Young L, Jones EMT (1980) Microwave filters, impedance matching networks and coupling structures. Artech House, Dedham, pp 472–474

    Google Scholar 

  42. Bryant TG, Weiss JA (1968) Parameters of microstrip transmission lines and of coupled pairs of microstrip lines. IEEE Trans Microw Theory Tech, MTT-16 (12):1021–1027

    Google Scholar 

  43. Krage MK, Haddad GI (1972) Frequency dependence characteristics of microstrip transmission lines. IEEE Trans Microw Theory Tech, MTT-20:678–688

    Google Scholar 

  44. Pregla R, Kowalski G (1974) Simple formulas for the determination of the characteristic constants of microstrips. Arch Elek Ubertragung 28:339–340

    Google Scholar 

  45. Kirschning M, Jansen R (1984) Accurate wide-range design equations for the frequency-dependent characteristics of parallel coupled microstrip lines. IEEE Trans Microw Theory Tech MTT-32(1):83–90. Corrections: IEEE Trans Microw Theory Tech, MTT-33 (3):288 March 1985

    Google Scholar 

  46. Fooks EH, Zakarevicius RA (1990) Microwave engineering using microstrip circuits. Prentice-Hall of Australia, New York, p 222

    Google Scholar 

  47. Akhtarzad S, Rowbotham T, Jones PB (1975) The design of coupled microstrip lines. IEEE Trans Microw Theory Tech, MTT-23 (6):486–492

    Google Scholar 

  48. Hammerstad EO, Bekkadal F (1975) A microstrip handbook. ELAB Report, STF 44 A74169, N7034, University of Trondheim-NTH, Norway

    Google Scholar 

  49. Klein JL, Chang K (1990) Optimum dielectric overlay thickness for equal even- and odd-mode phase velocities in coupled microstrip circuits. Electron Lett 26:274–276

    Article  Google Scholar 

  50. Tran M, Nguyen C (1994) Wideband bandpass filters employing broadside coupled microstrip lines for MIC and MMIC applications. Microw J 37(4):210–225

    Google Scholar 

  51. Bahl IJ (1989) Capacitively compensated high performance parallel-coupled microstrip filters. In: IEEE MTT-S International Microwave Symposium Digest 1989, pp 679–682

    Google Scholar 

  52. Wong JS (1979) Microstrip tapped-line filter design. IEEE Trans Microw Theory Tech, MTT-27 (1):44–50

    Google Scholar 

  53. Caspi S, Adelman J (1988) Design of combline and interdigital filters with tapped-line input. IEEE Trans Microw Theory Tech, MTT-36 (4):759–763

    Google Scholar 

  54. Bahl IJ, Bhartia P (2003) Microwave solid state circuit design. Wiley, New York, p 276

    Google Scholar 

  55. Milligan TA (1977) Dimensions of microstrip coupled lines and interdigital structures. IEEE Trans Microw Theory Tech, MTT-25 (5):405–410

    Google Scholar 

  56. Matthaei G, Young L, Jones EMT (1980) Microwave filters, impedance matching networks and coupling structures. Artech House, Dedham, pp 174–197

    Google Scholar 

  57. Shiffmand BM, Matthaei GL (1964) Exact design of band-stop microwave filters. IEEE Trans Microw Theory Tech, MTT-12 (1):6–15

    Google Scholar 

  58. Bates RN (1977) Design of microstrip spur-line band-stop filters. IEE J Microw Opt Acous 1(6):209–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Awang, Z. (2014). Microwave Filter Design. In: Microwave Systems Design. Springer, Singapore. https://doi.org/10.1007/978-981-4451-24-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-4451-24-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4451-23-9

  • Online ISBN: 978-981-4451-24-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics