Skip to main content
Book cover

WITS 2020 pp 377–387Cite as

New Delay Dependent Stability Condition for a Carbon Dioxide Takagi Sugeno Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 745))

Abstract

The growing interest in the preservation of environment leads several researchers to investigate the causes behind the high level of \({\text {CO}}_2\) and how to decrease it. This paper, deals with continuous time delay nonlinear systems (TDNS) stability conditions using the Takagi Sugeno Fuzzy Modeling. First a Nonlinear Carbon Dioxide Model is defined and transformed to a corresponding Fuzzy Takagi Sugeno (TS) multi-model. Then, by using the Lyapunov-Krasovskii Functionals (LK-F) and extending some linear time delay systems dependent delay stability technique to TS Fuzzy Modeling, a new relaxed stability conditions involving uncommon free matrices are addressed in Linear Matrix Inequalities (LMI). Finally a numerical simulation is also carried out to support the analytic results and to compare the conservativeness of the proven condition to other existing methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tennakone K (1990) Stability of the biomass-carbon dioxide equilibrium in the atmosphere: mathematical model. Appl Math Comput 35:125–130

    MathSciNet  MATH  Google Scholar 

  2. Misra AK, Verma M (2013) A mathematical model to study the dynamics of carbon dioxide gas in the atmosphere. Appl Math Comput 219:8595–8609

    MathSciNet  MATH  Google Scholar 

  3. Elmajidi A, Elmazoudi E, Elalami J, Elalami N (2017) Carbon dioxide stability by a fuzzy Takagi Sugeno model. In: Proceeding of the 4th Journée Scientifique d’Analyse des Systemes et Traitement de l’Information , Rabat Morocco

    Google Scholar 

  4. Elmajidi A, Elmazoudi E, Elalami J, Elalami N (2019) A fuzzy logic control of a polynomial carbon dioxide model. Ecol Environ Conserv 25(2):876–887

    Google Scholar 

  5. Misra AK, Verma M, Venturino E (2015) Modeling the control of atmospheric carbon dioxide through reforestation: effect of time delay. Model Earth Syst Environ 1:24

    Article  Google Scholar 

  6. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  7. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Cybern 15(1):116–132

    Article  Google Scholar 

  8. Lilly JH (2010) Fuzzy control and identification. Wiley (2010)

    Google Scholar 

  9. Tanaka K, Wang HO (2001) Fuzzy control systems design and analysis: a linear matrix inequality approach, 1st edn. Wiley

    Google Scholar 

  10. Fridman E (2014) Tutorial on Lyapunov-based methods for time-delay systems. Eur J Control 120:271–283

    Article  MathSciNet  Google Scholar 

  11. Seuret A, Gouaisbaut F, Baudouin L (2016) D1.1-overview of Lyapunov methods for time-delay systems. Rapport LAAS n\(^{\circ }\)16308, LAAS-CNRS. Hal-01369516

    Google Scholar 

  12. Cao YY, Frank PM (2001) Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models. Fuzzy Sets Syst. 124:213–229

    Article  MathSciNet  Google Scholar 

  13. Kruthika HA, Mahindrakar AD, Pasumarthy R (2017) Stability analysis of nonlinear time-delayed systems with application to biological models. Int J Appl Math Comput Sci 27:91–103

    Article  MathSciNet  Google Scholar 

  14. Manai Y, Benrejeb M, Borne P (2011) New approach of stability for time-delay Takagi-Sugeno fuzzy system based on fuzzy weighting-dependent Lyapunov functionals. Appl Math 02:1339–1345

    Article  Google Scholar 

  15. Seuret A, Gouaisbaut F (2012) On the use of the Wirtinger inequalities for time-delay systems. In: Proceedings of the 10-th IFAC workshop on time delay systems. The International Federation of Automatic Control Northeastern University Boston USA

    Google Scholar 

  16. Chadli M, Maquin D, Ragot J (2001) Stability and stabilisability of continuous Takagi-Sugeno systems. Journées Doctorales d’Automatique, Toulouse France, Sep 2001, pp. CDROM

    Google Scholar 

  17. Benzaouia A, El Hajjaji A (2014) Advanced Takagi-Sugeno fuzzy systems: delay and saturation, studies in systems. Decis Control 8

    Google Scholar 

  18. M. Chadli, D. Maquin and J. Ragot, Static output feedback for Takaki-Sugeno systems: an LMI approach, Proceeding of the 10th Mediterranean conference on control and automation-MED2002, Lisbon, Portugal , (2002): pp.CDROM

    Google Scholar 

  19. Maria Nagy A (2010) Analyse et synthese de multimodeles pour le diagnostic: application a une station d’epuration https://tel.archives-ouvertes.fr

  20. Moon YS, Park PG, Kwon WH, Lee YS (2001) A delay dependent robust stabilization of uncertain state-delayed systems. Int J Control 74(14):1447–1455

    Article  MathSciNet  Google Scholar 

  21. Chen B, Liu X (2005) Delay-dependent robust H control for T-S fuzzy systems with time delay. IEEE Trans Fuzzy Syst 13(4):544–556

    Article  Google Scholar 

  22. Boyd S, Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. Society for Industrial and Applied Mathematics SIAM, Philadelphia

    Google Scholar 

  23. Li C, Wang H, Liao X (2004) Delay-dependent robust stability of uncertain fuzzy systems with time-varying delays. IEEE Proc Control Theory Appl 151(4):417–421

    Google Scholar 

  24. Elmajidi A, Elmazoudi E, Elalami J, Elalami N (2020) Dependent delay stability characterization for a polynomial T-S carbon dioxide model. In: International conference on mathematics & data science (ICMDS 2020), pp CDROM

    Google Scholar 

  25. Löfberg J (2004) YALMIP : a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD conference, pp CDROM

    Google Scholar 

  26. Mosek (2020) MOSEK modeling cookbook, vol 3.2.2

    Google Scholar 

  27. Lin C, GuoWang Q, Lee TH, He Y (2007) LMI approach to analysis and control of Takagi-Sugeno fuzzy systems with time delay. In: Lecture notes in control and information sciences, vol 351

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their constructive remarks and recommendations which will improve the quality of the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azeddine Elmajidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elmajidi, A., Elmazoudi, E., Elalami, J., Elalami, N. (2022). New Delay Dependent Stability Condition for a Carbon Dioxide Takagi Sugeno Model. In: Bennani, S., Lakhrissi, Y., Khaissidi, G., Mansouri, A., Khamlichi, Y. (eds) WITS 2020. Lecture Notes in Electrical Engineering, vol 745. Springer, Singapore. https://doi.org/10.1007/978-981-33-6893-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6893-4_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6892-7

  • Online ISBN: 978-981-33-6893-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics